Yang Su Hyun, Lee Yun Jae, Kang Heemin, Park Seung-Keun, Kang Yun Chan
Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.
Department of Advanced Materials Engineering, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
Nanomicro Lett. 2021 Dec 6;14(1):17. doi: 10.1007/s40820-021-00741-0.
Two-dimensional (2D) MXenes are promising as electrode materials for energy storage, owing to their high electronic conductivity and low diffusion barrier. Unfortunately, similar to most 2D materials, MXene nanosheets easily restack during the electrode preparation, which degrades the electrochemical performance of MXene-based materials. A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional (3D) balls coated with iron selenides and carbon. This strategy involves the preparation of FeO@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process. Such 3D structuring effectively prevents interlayer restacking, increases the surface area, and accelerates ion transport, while maintaining the attractive properties of MXene. Furthermore, combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls. The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g after 200 cycles at 0.1 A g in potassium-ion batteries, corresponding to the capacity retention of 97% as calculated based on 100 cycles. Even at a high current density of 5.0 A g, the composite exhibits a discharge capacity of 169 mAh g.
二维(2D)MXenes因其高电子导电性和低扩散势垒,有望成为储能电极材料。不幸的是,与大多数二维材料类似,MXene纳米片在电极制备过程中容易重新堆叠,这会降低基于MXene材料的电化学性能。本文提出了一种新颖的合成策略,将MXene转化为包覆有硒化铁和碳的抑制重新堆叠的三维(3D)球。该策略包括通过简便的超声喷雾热解和随后的硒化过程制备FeO@碳/MXene微球。这种3D结构有效地防止了层间重新堆叠,增加了表面积,并加速了离子传输,同时保持了MXene的诱人特性。此外,将硒化铁和碳与3D MXene球相结合,为离子存储提供了更多位点,并增强了复合球的结构稳定性。所得的3D结构微球在钾离子电池中以0.1 A g的电流密度循环200次后,表现出410 mAh g的高可逆容量,基于100次循环计算,容量保持率为97%。即使在5.0 A g的高电流密度下,该复合材料仍表现出169 mAh g的放电容量。