Suppr超能文献

泛基因组学和机器学习在植物基因组选择中的应用。

The application of pangenomics and machine learning in genomic selection in plants.

机构信息

School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia.

出版信息

Plant Genome. 2021 Nov;14(3):e20112. doi: 10.1002/tpg2.20112. Epub 2021 Jul 20.

Abstract

Genomic selection approaches have increased the speed of plant breeding, leading to growing crop yields over the last decade. However, climate change is impacting current and future yields, resulting in the need to further accelerate breeding efforts to cope with these changing conditions. Here we present approaches to accelerate plant breeding and incorporate nonadditive effects in genomic selection by applying state-of-the-art machine learning approaches. These approaches are made more powerful by the inclusion of pangenomes, which represent the entire genome content of a species. Understanding the strengths and limitations of machine learning methods, compared with more traditional genomic selection efforts, is paramount to the successful application of these methods in crop breeding. We describe examples of genomic selection and pangenome-based approaches in crop breeding, discuss machine learning-specific challenges, and highlight the potential for the application of machine learning in genomic selection. We believe that careful implementation of machine learning approaches will support crop improvement to help counter the adverse outcomes of climate change on crop production.

摘要

基因组选择方法加速了植物育种的速度,导致过去十年作物产量不断增长。然而,气候变化正在影响当前和未来的产量,因此需要进一步加快育种工作的步伐,以应对这些不断变化的情况。在这里,我们介绍了通过应用最先进的机器学习方法来加速植物育种和整合非加性效应的方法。通过包含泛基因组,这些方法变得更加强大,泛基因组代表了一个物种的整个基因组内容。与更传统的基因组选择工作相比,了解机器学习方法的优缺点对于这些方法在作物育种中的成功应用至关重要。我们描述了基因组选择和基于泛基因组的作物育种方法的例子,讨论了机器学习特有的挑战,并强调了机器学习在基因组选择中的应用潜力。我们相信,谨慎实施机器学习方法将支持作物改良,以帮助应对气候变化对作物生产的不利影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验