Suppr超能文献

基于卷积递归神经网络的心电图心拍序列分类。

Sequence to Sequence ECG Cardiac Rhythm Classification Using Convolutional Recurrent Neural Networks.

出版信息

IEEE J Biomed Health Inform. 2022 Feb;26(2):572-580. doi: 10.1109/JBHI.2021.3098662. Epub 2022 Feb 4.

Abstract

This paper proposes a novel deep learning architecture involving combinations of Convolutional Neural Networks (CNN) layers and Recurrent neural networks (RNN) layers that can be used to perform segmentation and classification of 5 cardiac rhythms based on ECG recordings. The algorithm is developed in a sequence to sequence setting where the input is a sequence of five second ECG signal sliding windows and the output is a sequence of cardiac rhythm labels. The novel architecture processes as input both the spectrograms of the ECG signal as well as the heartbeats' signal waveform. Additionally, we are able to train the model in the presence of label noise. The model's performance and generalizability is verified on an external database different from the one we used to train. Experimental result shows this approach can achieve an average F1 scores of 0.89 (averaged across 5 classes). The proposed model also achieves comparable classification performance to existing state-of-the-art approach with considerably less number of training parameters.

摘要

本文提出了一种新的深度学习架构,涉及卷积神经网络 (CNN) 层和循环神经网络 (RNN) 层的组合,可用于基于 ECG 记录对 5 种心脏节律进行分割和分类。该算法是在序列到序列的设置中开发的,其中输入是五个第二 ECG 信号滑动窗口的序列,输出是心脏节律标签的序列。新架构将 ECG 信号的频谱图以及心跳信号的波形作为输入进行处理。此外,我们能够在存在标签噪声的情况下训练模型。我们在与用于训练的数据库不同的外部数据库上验证了模型的性能和泛化能力。实验结果表明,该方法可以实现平均 F1 分数为 0.89(平均 5 类)。所提出的模型还实现了与现有最先进方法相当的分类性能,而训练参数的数量要少得多。

相似文献

1
Sequence to Sequence ECG Cardiac Rhythm Classification Using Convolutional Recurrent Neural Networks.
IEEE J Biomed Health Inform. 2022 Feb;26(2):572-580. doi: 10.1109/JBHI.2021.3098662. Epub 2022 Feb 4.
3
Automated ECG classification using a non-local convolutional block attention module.
Comput Methods Programs Biomed. 2021 May;203:106006. doi: 10.1016/j.cmpb.2021.106006. Epub 2021 Feb 27.
5
A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal.
Sensors (Basel). 2021 Feb 1;21(3):951. doi: 10.3390/s21030951.
6
Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss.
Comput Biol Med. 2020 Aug;123:103866. doi: 10.1016/j.compbiomed.2020.103866. Epub 2020 Jul 5.
7
ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network.
Artif Intell Med. 2020 Jun;106:101856. doi: 10.1016/j.artmed.2020.101856. Epub 2020 May 11.
8
An Improved Convolutional Neural Network Based Approach for Automated Heartbeat Classification.
J Med Syst. 2019 Dec 18;44(2):35. doi: 10.1007/s10916-019-1511-2.
10
A deep convolutional neural network model to classify heartbeats.
Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24.

引用本文的文献

1
Deep learning for cardiovascular management: optimizing pathways and cost control under diagnosis-related group models.
Front Artif Intell. 2025 Sep 1;8:1580445. doi: 10.3389/frai.2025.1580445. eCollection 2025.
3
Deep learning-based prediction of atrial fibrillation from polar transformed time-frequency electrocardiogram.
PLoS One. 2025 Mar 10;20(3):e0317630. doi: 10.1371/journal.pone.0317630. eCollection 2025.
4
A knowledge embedded multimodal pseudo-siamese model for atrial fibrillation detection.
Sci Rep. 2025 Jan 24;15(1):3133. doi: 10.1038/s41598-025-87115-3.
6
Non-Invasive Biosensing for Healthcare Using Artificial Intelligence: A Semi-Systematic Review.
Biosensors (Basel). 2024 Apr 9;14(4):183. doi: 10.3390/bios14040183.
9
Electrocardiogram classification using TSST-based spectrogram and ConViT.
Front Cardiovasc Med. 2022 Oct 10;9:983543. doi: 10.3389/fcvm.2022.983543. eCollection 2022.
10
State-of-the-Art Deep Learning Methods on Electrocardiogram Data: Systematic Review.
JMIR Med Inform. 2022 Aug 15;10(8):e38454. doi: 10.2196/38454.

本文引用的文献

1
Inter- and intra-patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach.
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:1308-1312. doi: 10.1109/icassp.2019.8683140. Epub 2019 Apr 17.
2
When Silence Isn't Golden: The Case of "Silent" Atrial Fibrillation.
J Innov Card Rhythm Manag. 2017 Nov 15;8(11):2886-2893. doi: 10.19102/icrm.2017.081102. eCollection 2017 Nov.
3
Stroke Risk as a Function of Atrial Fibrillation Duration and CHADS-VASc Score.
Circulation. 2019 Nov 12;140(20):1639-1646. doi: 10.1161/CIRCULATIONAHA.119.041303. Epub 2019 Sep 30.
4
LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices.
IEEE J Biomed Health Inform. 2020 Feb;24(2):515-523. doi: 10.1109/JBHI.2019.2911367. Epub 2019 Apr 15.
5
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
7
9
An open source benchmarked toolbox for cardiovascular waveform and interval analysis.
Physiol Meas. 2018 Oct 11;39(10):105004. doi: 10.1088/1361-6579/aae021.
10
Accurate detection of atrial fibrillation and atrial flutter using the electrocardiomatrix technique.
J Electrocardiol. 2018 Nov-Dec;51(6S):S121-S125. doi: 10.1016/j.jelectrocard.2018.08.011. Epub 2018 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验