Department of Pharmaceutical and Health Economics, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America.
Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, United States of America.
PLoS One. 2021 Jul 21;16(7):e0254950. doi: 10.1371/journal.pone.0254950. eCollection 2021.
Tuberculosis (TB) incidence in Los Angeles County, California, USA (5.7 per 100,000) is significantly higher than the U.S. national average (2.9 per 100,000). Directly observed therapy (DOT) is the preferred strategy for active TB treatment but requires substantial resources. We partnered with the Los Angeles County Department of Public Health (LACDPH) to evaluate the cost-effectiveness of AiCure, an artificial intelligence (AI) platform that allows for automated treatment monitoring.
We used a Markov model to compare DOT versus AiCure for active TB treatment in LA County. Each cohort transitioned between health states at rates estimated using data from a pilot study for AiCure (N = 43) and comparable historical controls for DOT (N = 71). We estimated total costs (2017, USD) and quality-adjusted life years (QALYs) over a 16-month horizon to calculate the incremental cost-effectiveness ratio (ICER) and net monetary benefits (NMB) of AiCure. To assess robustness, we conducted deterministic (DSA) and probabilistic sensitivity analyses (PSA).
For the average patient, AiCure was dominant over DOT. DOT treatment cost $4,894 and generated 1.03 QALYs over 16-months. AiCure treatment cost $2,668 for 1.05 QALYs. At willingness-to-pay threshold of $150K/QALY, incremental NMB per-patient under AiCure was $4,973. In univariate DSA, NMB were most sensitive to monthly doses and vocational nurse wage; however, AiCure remained dominant. In PSA, AiCure was dominant in 93.5% of 10,000 simulations (cost-effective in 96.4%).
AiCure for treatment of active TB is cost-effective for patients in LA County, California. Increased use of AI platforms in other jurisdictions could facilitate the CDC's vision of TB elimination.
美国加利福尼亚州洛杉矶县的结核病(TB)发病率(5.7/10 万)明显高于美国全国平均水平(2.9/10 万)。直接观察治疗(DOT)是活动性结核病治疗的首选策略,但需要大量资源。我们与洛杉矶县公共卫生部(LACDPH)合作,评估人工智能(AI)平台 AiCure 的成本效益,该平台允许自动治疗监测。
我们使用马尔可夫模型比较了 DOT 与 AiCure 在洛杉矶县活动性 TB 治疗中的效果。每个队列以使用 AiCure 试点研究(N = 43)和 DOT 可比历史对照(N = 71)的数据估计的速率在健康状态之间转换。我们在 16 个月的时间内估计了总费用(2017 年,美元)和质量调整生命年(QALY),以计算 AiCure 的增量成本效益比(ICER)和净货币收益(NMB)。为了评估稳健性,我们进行了确定性分析(DSA)和概率敏感性分析(PSA)。
对于平均患者,AiCure 优于 DOT。DOT 治疗费用为 4894 美元,16 个月内产生 1.03 个 QALY。AiCure 治疗费用为 2668 美元,1.05 个 QALY。在 150K/QALY 的支付意愿阈值下,每位患者的增量 NMB 为 4973 美元。在单变量 DSA 中,NMB 对每月剂量和职业护士工资最敏感;然而,AiCure 仍然占主导地位。在 PSA 中,在 10000 次模拟中的 93.5%中,AiCure 占主导地位(96.4%具有成本效益)。
对于加利福尼亚州洛杉矶县的患者,AiCure 治疗活动性 TB 具有成本效益。在其他管辖区增加使用 AI 平台可以促进疾病预防控制中心消除结核病的愿景。