Gray Montgomery, Herbert John M
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
J Chem Phys. 2021 Jul 21;155(3):034103. doi: 10.1063/5.0059364.
Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn-Sham orbitals, or SAPT0(KS), can be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately for each monomer. As in other contexts, correct asymptotic behavior can be enforced via "optimal tuning" based on the ionization energy theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on the size of the exchange hole. In conjunction with "extended" (X)SAPT methods that improve the description of dispersion, this procedure achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific tuning.
基于Kohn-Sham轨道的二阶对称适配微扰理论(SAPT),即SAPT0(KS),长期以来被认为是失败的,但现在可以通过使用长程校正密度泛函来实现半定量目的而重获新生,这些密度泛函的渐近行为针对每个单体分别进行调整。与其他情况一样,可以根据密度泛函理论的电离能定理通过“最优调谐”来强制实现正确的渐近行为,但调谐过程繁琐,对于大型系统成本高昂,并且对系统大小存在令人困扰的依赖性。在此,我们表明,使用基于交换空穴大小的快速、便捷且自动化的调谐程序可获得基本相同的结果。结合改进色散描述的“扩展”(X)SAPT方法,该程序可实现基准质量的相互作用能以及常规的SAPT能量分解,而无需进行特定于系统的调谐的麻烦。