Suppr超能文献

用于等温等压系综的自学习混合蒙特卡罗方法:应用于液态二氧化硅。

Self-learning hybrid Monte Carlo method for isothermal-isobaric ensemble: Application to liquid silica.

作者信息

Kobayashi Keita, Nagai Yuki, Itakura Mitsuhiro, Shiga Motoyuki

机构信息

CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan.

出版信息

J Chem Phys. 2021 Jul 21;155(3):034106. doi: 10.1063/5.0055341.

Abstract

Self-learning hybrid Monte Carlo (SLHMC) is a first-principles simulation that allows for exact ensemble generation on potential energy surfaces based on density functional theory. The statistical sampling can be accelerated with the assistance of smart trial moves by machine learning potentials. In the first report [Nagai et al., Phys. Rev. B 102, 041124(R) (2020)], the SLHMC approach was introduced for the simplest case of canonical sampling. We herein extend this idea to isothermal-isobaric ensembles to enable general applications for soft materials and liquids with large volume fluctuation. As a demonstration, the isothermal-isobaric SLHMC method was used to study the vibrational structure of liquid silica at temperatures close to the melting point, whereby the slow diffusive motion is beyond the time scale of first-principles molecular dynamics. It was found that the static structure factor thus computed from first-principles agrees quite well with the high-energy x-ray data.

摘要

自学习混合蒙特卡罗(SLHMC)是一种基于密度泛函理论在势能面上进行精确系综生成的第一性原理模拟。借助机器学习势的智能尝试移动,可以加速统计抽样。在第一篇报告中[Nagai等人,《物理评论B》102, 041124(R) (2020)],针对最简单的正则抽样情况引入了SLHMC方法。我们在此将这一思想扩展到等温等压系综,以实现对具有大体积涨落的软材料和液体的一般应用。作为一个示例,等温等压SLHMC方法被用于研究接近熔点温度下液态二氧化硅的振动结构,其中缓慢的扩散运动超出了第一性原理分子动力学的时间尺度。结果发现,由此从第一性原理计算得到的静态结构因子与高能X射线数据相当吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验