Rizal Samsul, Mistar E M, Rahman A A, H P S Abdul Khalil, Oyekanmi A A, Olaiya N G, Abdullah C K, Alfatah Tata
Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
Polymers (Basel). 2021 Jul 14;13(14):2303. doi: 10.3390/polym13142303.
Bionanocarbon as a properties enhancement material in fibre reinforced nanobiocomposite was investigated for sustainable material applications. Currently, an extensive study using the micro size of biocarbon as filler or reinforcement materials has been done. However, poor fibre-matrix interface results in poor mechanical, physical, and thermal properties of the composite. Hence in this study, the nanoparticle of biocarbon was synthesised and applied as a functional material and properties enhancement in composite material. The bionanocarbon was prepared from an oil palm shell, an agriculture waste precursor, via a single-step activation technique. The nanocarbon filler loading was varied from 0, 1, 3, and 5% as nanoparticle properties enhancement in nonwoven kenaf fibre reinforcement in vinyl ester composite using resin transfer moulding technique. The functional properties were evaluated using TEM, particle size, zeta potential, and energy dispersion X-ray (EDX) elemental analysis. While the composite properties enhancement was evaluated using physical, mechanical, morphological, thermal, and wettability properties. The result indicated excellent nanofiller enhancement of fibre-matrix bonding that significantly improved the physical, mechanical, and thermal properties of the bionanocomposite. The SEM morphology study confirmed the uniform dispersion of the nanoparticle enhanced the fibre-matrix interaction. In this present work, the functional properties of bionanocarbon from oil palm shells (oil palm industrial waste) was incorporated in nanaobiocomposite, which significantly enhance its properties. The optimum enhancement of the bionanocomposite functional properties was obtained at 3% bionanocarbon loading. The improvement can be attributed to homogeneity and improved interfacial interaction between nanoparticles, kenaf fibre, and matrix.
研究了生物纳米碳作为纤维增强纳米生物复合材料中的性能增强材料在可持续材料应用中的情况。目前,已经对使用微米尺寸的生物碳作为填料或增强材料进行了广泛研究。然而,纤维与基体之间的界面较差导致复合材料的机械、物理和热性能不佳。因此,在本研究中,合成了生物碳纳米颗粒并将其用作功能材料以增强复合材料的性能。生物纳米碳由农业废弃物前驱体油棕壳通过单步活化技术制备而成。使用树脂传递模塑技术,在乙烯基酯复合材料的非织造红麻纤维增强材料中,纳米碳填料的负载量分别为0%、1%、3%和5%,以增强纳米颗粒的性能。使用透射电子显微镜(TEM)、粒度分析、zeta电位和能量色散X射线(EDX)元素分析对功能性能进行了评估。同时,使用物理、机械、形态、热和润湿性等性能对复合材料性能增强情况进行了评估。结果表明,纳米填料对纤维与基体的结合有优异的增强作用,显著改善了生物纳米复合材料的物理、机械和热性能。扫描电子显微镜(SEM)形态学研究证实,纳米颗粒的均匀分散增强了纤维与基体的相互作用。在本工作中,将来自油棕壳(油棕工业废弃物)的生物纳米碳的功能特性引入到纳米生物复合材料中,显著增强了其性能。在生物纳米碳负载量为3%时,生物纳米复合材料的功能性能得到了最佳增强。这种改善可归因于纳米颗粒、红麻纤维和基体之间的均匀性以及界面相互作用的改善。