Suppr超能文献

随机网络中的赫布学习捕捉前额叶皮层的选择性特性。

Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.

作者信息

Lindsay Grace W, Rigotti Mattia, Warden Melissa R, Miller Earl K, Fusi Stefano

机构信息

Center for Theoretical Neuroscience, College of Physicians and Surgeons.

Mortimer B. Zuckerman Mind Brain Behavior Institute, College of Physicians and Surgeons, and.

出版信息

J Neurosci. 2017 Nov 8;37(45):11021-11036. doi: 10.1523/JNEUROSCI.1222-17.2017. Epub 2017 Oct 6.

Abstract

Complex cognitive behaviors, such as context-switching and rule-following, are thought to be supported by the prefrontal cortex (PFC). Neural activity in the PFC must thus be specialized to specific tasks while retaining flexibility. Nonlinear "mixed" selectivity is an important neurophysiological trait for enabling complex and context-dependent behaviors. Here we investigate (1) the extent to which the PFC exhibits computationally relevant properties, such as mixed selectivity, and (2) how such properties could arise via circuit mechanisms. We show that PFC cells recorded from male and female rhesus macaques during a complex task show a moderate level of specialization and structure that is not replicated by a model wherein cells receive random feedforward inputs. While random connectivity can be effective at generating mixed selectivity, the data show significantly more mixed selectivity than predicted by a model with otherwise matched parameters. A simple Hebbian learning rule applied to the random connectivity, however, increases mixed selectivity and enables the model to match the data more accurately. To explain how learning achieves this, we provide analysis along with a clear geometric interpretation of the impact of learning on selectivity. After learning, the model also matches the data on measures of noise, response density, clustering, and the distribution of selectivities. Of two styles of Hebbian learning tested, the simpler and more biologically plausible option better matches the data. These modeling results provide clues about how neural properties important for cognition can arise in a circuit and make clear experimental predictions regarding how various measures of selectivity would evolve during animal training. The prefrontal cortex is a brain region believed to support the ability of animals to engage in complex behavior. How neurons in this area respond to stimuli-and in particular, to combinations of stimuli ("mixed selectivity")-is a topic of interest. Even though models with random feedforward connectivity are capable of creating computationally relevant mixed selectivity, such a model does not match the levels of mixed selectivity seen in the data analyzed in this study. Adding simple Hebbian learning to the model increases mixed selectivity to the correct level and makes the model match the data on several other relevant measures. This study thus offers predictions on how mixed selectivity and other properties evolve with training.

摘要

诸如情境切换和遵循规则等复杂认知行为被认为是由前额叶皮层(PFC)支持的。因此,PFC中的神经活动必须专门针对特定任务,同时保持灵活性。非线性“混合”选择性是实现复杂且依赖情境行为的重要神经生理特征。在这里,我们研究:(1)PFC在多大程度上表现出与计算相关的特性,如混合选择性;(2)这些特性如何通过电路机制产生。我们表明,在一项复杂任务中从雄性和雌性恒河猴记录的PFC细胞表现出适度的专业化和结构,而细胞接收随机前馈输入的模型无法复制这种情况。虽然随机连接在产生混合选择性方面可能有效,但数据显示的混合选择性明显高于具有其他匹配参数的模型所预测的水平。然而,应用于随机连接的简单赫布学习规则会增加混合选择性,并使模型更准确地匹配数据。为了解释学习如何实现这一点,我们提供了分析以及对学习对选择性影响的清晰几何解释。学习后,该模型在噪声、响应密度、聚类和选择性分布的测量方面也与数据相匹配。在测试的两种赫布学习方式中,更简单且更具生物学合理性的选项与数据的匹配度更高。这些建模结果为对认知重要的神经特性如何在电路中产生提供了线索,并对动物训练期间选择性的各种测量将如何演变做出了明确的实验预测。前额叶皮层是一个被认为支持动物进行复杂行为能力的脑区。该区域的神经元如何对刺激做出反应——特别是对刺激组合(“混合选择性”)的反应——是一个有趣的话题。尽管具有随机前馈连接的模型能够创建与计算相关的混合选择性,但这样的模型与本研究分析的数据中所见的混合选择性水平不匹配。在模型中添加简单的赫布学习会将混合选择性提高到正确水平,并使模型在其他几个相关测量上与数据相匹配。因此,这项研究对混合选择性和其他特性如何随训练演变提供了预测。

相似文献

2
Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.前额叶皮层在训练后出现非线性混合选择性。
J Neurosci. 2021 Sep 1;41(35):7420-7434. doi: 10.1523/JNEUROSCI.2814-20.2021. Epub 2021 Jul 22.
7
The importance of mixed selectivity in complex cognitive tasks.复杂认知任务中混合选择性的重要性。
Nature. 2013 May 30;497(7451):585-90. doi: 10.1038/nature12160. Epub 2013 May 19.

引用本文的文献

8
Geometry of neural computation unifies working memory and planning.神经计算的几何结构统一了工作记忆和规划。
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2115610119. doi: 10.1073/pnas.2115610119. Epub 2022 Sep 6.
10
Toward Reflective Spiking Neural Networks Exploiting Memristive Devices.迈向利用忆阻器件的反射式脉冲神经网络。
Front Comput Neurosci. 2022 Jun 16;16:859874. doi: 10.3389/fncom.2022.859874. eCollection 2022.

本文引用的文献

3
Optimal Degrees of Synaptic Connectivity.突触连接的最佳程度
Neuron. 2017 Mar 8;93(5):1153-1164.e7. doi: 10.1016/j.neuron.2017.01.030. Epub 2017 Feb 16.
7
Why neurons mix: high dimensionality for higher cognition.神经元为何混合:高维结构助力更高认知
Curr Opin Neurobiol. 2016 Apr;37:66-74. doi: 10.1016/j.conb.2016.01.010. Epub 2016 Feb 4.
9
Insights into human behavior from lesions to the prefrontal cortex.从前额叶皮质损伤看人类行为。
Neuron. 2014 Sep 3;83(5):1002-18. doi: 10.1016/j.neuron.2014.08.011. Epub 2014 Aug 28.
10
Sparseness and expansion in sensory representations.感觉表象的稀疏化和扩展。
Neuron. 2014 Sep 3;83(5):1213-26. doi: 10.1016/j.neuron.2014.07.035. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验