Suppr超能文献

非线性混合选择性支持可靠的神经计算。

Nonlinear mixed selectivity supports reliable neural computation.

机构信息

Graduate Program in Computational Neuroscience, The University of Chicago, Chicago, Illinois, United States of America.

Department of Neurobiology, The University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS Comput Biol. 2020 Feb 18;16(2):e1007544. doi: 10.1371/journal.pcbi.1007544. eCollection 2020 Feb.

Abstract

Neuronal activity in the brain is variable, yet both perception and behavior are generally reliable. How does the brain achieve this? Here, we show that the conjunctive coding of multiple stimulus features, commonly known as nonlinear mixed selectivity, may be used by the brain to support reliable information transmission using unreliable neurons. Nonlinearly mixed feature representations have been observed throughout primary sensory, decision-making, and motor brain areas. In these areas, different features are almost always nonlinearly mixed to some degree, rather than represented separately or with only additive (linear) mixing, which we refer to as pure selectivity. Mixed selectivity has been previously shown to support flexible linear decoding for complex behavioral tasks. Here, we show that it has another important benefit: in many cases, it makes orders of magnitude fewer decoding errors than pure selectivity even when both forms of selectivity use the same number of spikes. This benefit holds for sensory, motor, and more abstract, cognitive representations. Further, we show experimental evidence that mixed selectivity exists in the brain even when it does not enable behaviorally useful linear decoding. This suggests that nonlinear mixed selectivity may be a general coding scheme exploited by the brain for reliable and efficient neural computation.

摘要

大脑中的神经元活动是多变的,但感知和行为通常是可靠的。大脑是如何做到这一点的?在这里,我们表明,多个刺激特征的组合编码,通常称为非线性混合选择性,可被大脑用于使用不可靠的神经元来支持可靠的信息传输。非线性混合特征表示已经在主要的感觉、决策和运动脑区中被观察到。在这些区域中,不同的特征几乎总是在某种程度上被非线性混合,而不是单独表示或只有加性(线性)混合,我们称之为纯选择性。混合选择性以前被证明可以支持复杂行为任务的灵活线性解码。在这里,我们表明,它具有另一个重要的好处:在许多情况下,即使混合选择性和纯选择性使用相同数量的尖峰,它也会比纯选择性产生数量级更少的解码错误。这种好处适用于感觉、运动和更抽象的认知表示。此外,我们还提供了实验证据表明,即使非线性混合选择性不能实现行为有用的线性解码,它也存在于大脑中。这表明非线性混合选择性可能是大脑用于可靠和高效神经计算的一种通用编码方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e1/7048320/112b0ae542f0/pcbi.1007544.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验