文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 的多区域放射组学预测局部晚期直肠癌新辅助放化疗后远处转移的价值

MRI-based Multiregional Radiomics for Pretreatment Prediction of Distant Metastasis After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer.

机构信息

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China (R.Z., L.W., S.C., W.P., X.L., L.L., H.Z.).

Department of Pharmaceutical Diagnosis, GE Healthcare, Life Sciences, Beijing, China (S.W.).

出版信息

Acad Radiol. 2024 Apr;31(4):1367-1377. doi: 10.1016/j.acra.2023.09.007. Epub 2023 Oct 4.


DOI:10.1016/j.acra.2023.09.007
PMID:37802671
Abstract

RATIONALE AND OBJECTIVES: To develop and validate a nomogram based on intratumoral and peritumoral radiomics signatures for pretreatment prediction of distant metastasis-free survival (DMFS) in patients after neoadjuvant chemoradiotherapy (NCRT) with locally advanced rectal cancer (LARC). MATERIALS AND METHODS: This retrospective study included 230 patients (161 training cohort; 69 validation cohort) with LARC who underwent NCRT and surgery. Radiomics features were extracted on T2-weighted images from gross tumor volume (GTV) and volumes of 4-mm, 6-mm, and 8-mm peritumoral regions (PTV, PTV, and PTV). The least absolute shrinkage and selection operator (LASSO)-Cox analysis were used for features selection and models construction. The performance of each model in predicting DMFS was evaluated by the Concordance index (C-index) and time-independent receiver operating characteristic curve (ROC). RESULTS: The PTV radiomics model demonstrated superior performance compared to the PTV and PTV radiomics models, with C-indexes of 0.750 and 0.703 in the training and validation cohorts, respectively. The nomogram was constructed by integrating the GTV radiomics signature, PTV radiomics signature, and relevant clinical characteristics, including CA19-9 level, clinical T stage, and clinical N stage. The nomogram achieved C-indexes of 0.831 and 0.748, with corresponding AUCs of 0.872 and 0.808 for 5-year DMFS in the training and validation cohorts, respectively. Kaplan-Meier analysis revealed that a cut-off value of 1.653 effectively stratified patients into high- and low-risk groups for DM (P < 0.001). CONCLUSION: The intra-peritumoral radiomics nomogram is a favorable tool for clinicians to develop personalized systemic treatment and intensive follow-up strategies to improve patient prognosis.

摘要

背景与目的:为了预测接受新辅助放化疗(NCRT)的局部晚期直肠癌(LARC)患者无远处转移生存(DMFS),我们开发并验证了一种基于肿瘤内和肿瘤周围放射组学特征的列线图。

材料与方法:本回顾性研究纳入了 230 例接受 NCRT 联合手术治疗的 LARC 患者(161 例训练队列;69 例验证队列)。在 GTV 和 4mm、6mm、8mm 肿瘤周围区域(PTV、PTV 和 PTV)的 T2 加权图像上提取放射组学特征。采用最小绝对收缩和选择算子(LASSO)-Cox 分析进行特征选择和模型构建。通过一致性指数(C-index)和时间独立的接收者操作特征曲线(ROC)评估每个模型预测 DMFS 的性能。

结果:与 PTV 和 PTV 放射组学模型相比,PTV 放射组学模型具有更好的性能,其在训练和验证队列中的 C-index 分别为 0.750 和 0.703。通过整合 GTV 放射组学特征、PTV 放射组学特征以及 CA19-9 水平、临床 T 分期和临床 N 分期等相关临床特征,构建了列线图。该列线图在训练和验证队列中预测 5 年 DMFS 的 C-index 分别为 0.831 和 0.748,对应的 AUC 分别为 0.872 和 0.808。Kaplan-Meier 分析显示,分界值为 1.653 可有效将患者分为 DMFS 高风险和低风险组(P<0.001)。

结论:肿瘤内-肿瘤周围放射组学列线图是临床医生制定个体化全身治疗和强化随访策略以改善患者预后的有利工具。

相似文献

[1]
MRI-based Multiregional Radiomics for Pretreatment Prediction of Distant Metastasis After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer.

Acad Radiol. 2024-4

[2]
Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

Eur Radiol. 2018-8-20

[3]
Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer.

Abdom Radiol (NY). 2021-11

[4]
Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A multicentre study.

EBioMedicine. 2021-7

[5]
Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics.

J Magn Reson Imaging. 2022-10

[6]
MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer.

Abdom Radiol (NY). 2023-7

[7]
MRI-based multiregional radiomics for preoperative prediction of tumor deposit and prognosis in resectable rectal cancer: a bicenter study.

Eur Radiol. 2023-11

[8]
MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.

Radiology. 2022-5

[9]
MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

Acad Radiol. 2021-11

[10]
Pretreatment MRI-Based Radiomics for Prediction of Rectal Cancer Outcome: A Discovery and Validation Study.

Acad Radiol. 2024-5

引用本文的文献

[1]
Peritumoral and intratumoral magnetic resonance imaging-based radiomics of brain metastases for predicting the response to EGFR-tyrosine kinase inhibitors in metastatic non-small cell lung cancer.

Quant Imaging Med Surg. 2025-8-1

[2]
Habitat radiomics and transformer fusion model to evaluate treatment effectiveness of cavitary MDR-TB patients.

iScience. 2025-5-23

[3]
Research progress in multimodal radiomics of rectal cancer tumors and peritumoral regions in MRI.

Abdom Radiol (NY). 2025-5-31

[4]
Radiomic Features of Mesorectal Fat as Indicators of Response in Rectal Cancer Patients Undergoing Neoadjuvant Therapy.

Tomography. 2025-4-7

[5]
Beyond the tumor region: Peritumoral radiomics enhances prognostic accuracy in locally advanced rectal cancer.

World J Gastroenterol. 2025-2-28

[6]
Enhancing the role of MRI in rectal cancer: advances from staging to prognosis prediction.

Eur Radiol. 2025-3-6

[7]
The Role of Predictive and Prognostic MRI-Based Biomarkers in the Era of Total Neoadjuvant Treatment in Rectal Cancer.

Cancers (Basel). 2024-9-9

[8]
Role of microenvironment characteristics and MRI radiomics in the risk stratification of distant metastases in rectal cancer: a diagnostic study.

Int J Surg. 2025-1-1

[9]
A CT-based integrated model for preoperative prediction of occult lymph node metastasis in early tongue cancer.

PeerJ. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索