Suppr超能文献

使用机器学习预测连续体上的亚临床精神病样体验。

Predicting subclinical psychotic-like experiences on a continuum using machine learning.

机构信息

Melbourne School of Psychological Sciences, University of Melbourne, Australia; Queensland Brain Institute, University of Queensland, Australia.

Queensland Brain Institute, University of Queensland, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Child and Adolescent Mental Health Care, Mental Health Services Capital Region Copenhagen, University of Copenhagen, Denmark.

出版信息

Neuroimage. 2021 Nov 1;241:118329. doi: 10.1016/j.neuroimage.2021.118329. Epub 2021 Jul 22.

Abstract

Previous studies applying machine learning methods to psychosis have primarily been concerned with the binary classification of chronic schizophrenia patients and healthy controls. The aim of this study was to use electroencephalographic (EEG) data and pattern recognition to predict subclinical psychotic-like experiences on a continuum between these two extremes in otherwise healthy people. We applied two different approaches to an auditory oddball regularity learning task obtained from N = 73 participants: A feature extraction and selection routine incorporating behavioural measures, event-related potential components and effective connectivity parameters; Regularisation of spatiotemporal maps of event-related potentials. Using the latter approach, optimal performance was achieved using the response to frequent, predictable sounds. Features within the P50 and P200 time windows had the greatest contribution toward lower Prodromal Questionnaire (PQ) scores and the N100 time window contributed most to higher PQ scores. As a proof-of-concept, these findings demonstrate that EEG data alone are predictive of individual psychotic-like experiences in healthy people. Our findings are in keeping with the mounting evidence for altered sensory responses in schizophrenia, as well as the notion that psychosis may exist on a continuum expanding into the non-clinical population.

摘要

先前应用机器学习方法研究精神病学的研究主要关注慢性精神分裂症患者和健康对照者的二分类。本研究旨在使用脑电图 (EEG) 数据和模式识别,在这两个极端之间的连续体上预测健康人群中处于亚临床精神病样体验。我们在来自 N=73 名参与者的听觉异常规则学习任务中应用了两种不同的方法:一种是包含行为测量、事件相关电位成分和有效连通性参数的特征提取和选择例程;另一种是正则化事件相关电位的时空图谱。在后一种方法中,使用对频繁、可预测声音的反应可达到最佳性能。在 P50 和 P200 时间窗口内的特征对较低的前驱期问卷 (PQ) 分数有最大贡献,而 N100 时间窗口对较高的 PQ 分数贡献最大。作为概念验证,这些发现表明,EEG 数据本身可预测健康人群中的个体精神病样体验。我们的发现与精神分裂症中感觉反应改变的越来越多的证据以及精神病可能存在于扩展到非临床人群的连续体的观点一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验