Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.
Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, Missouri.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Sep;9(9):939-947. doi: 10.1016/j.bpsc.2024.05.009. Epub 2024 Jun 5.
Persistence and distress distinguish more clinically significant psychotic-like experiences (PLEs) from those that are less likely to be associated with impairment and/or need for care. Identifying risk factors that identify clinically relevant PLEs early in development is important for improving our understanding of the etiopathogenesis of these experiences. Machine learning analyses were used to examine the most important baseline factors distinguishing persistent distressing PLEs.
Using Adolescent Brain Cognitive Development (ABCD) Study data on PLEs from 3 time points (ages 9-13 years), we created the following groups: individuals with persistent distressing PLEs (n = 305), individuals with transient distressing PLEs (n = 374), and individuals with low-level PLEs demographically matched to either the persistent distressing PLEs group (n = 305) or the transient distressing PLEs group (n = 374). Random forest classification models were trained to distinguish persistent distressing PLEs from low-level PLEs, transient distressing PLEs from low-level PLEs, and persistent distressing PLEs from transient distressing PLEs. Models were trained using identified baseline predictors as input features (i.e., cognitive, neural [cortical thickness, resting-state functional connectivity], developmental milestone delays, internalizing symptoms, adverse childhood experiences).
The model distinguishing persistent distressing PLEs from low-level PLEs showed the highest accuracy (test sample accuracy = 69.33%; 95% CI, 61.29%-76.59%). The most important predictors included internalizing symptoms, adverse childhood experiences, and cognitive functioning. Models for distinguishing persistent PLEs from transient distressing PLEs generally performed poorly.
Model performance metrics indicated that while most important factors overlapped across models (e.g., internalizing symptoms), adverse childhood experiences were especially important for predicting persistent distressing PLEs. Machine learning analyses proved useful for distinguishing the most clinically relevant group from the least clinically relevant group but showed limited ability to distinguish among clinically relevant groups that differed in PLE persistence.
持续性和痛苦程度可将更具临床意义的类精神病体验(PLE)与不太可能与损害和/或护理需求相关的体验区分开来。识别早期发育中可识别具有临床相关性的 PLE 的风险因素对于增进我们对这些体验的病因发病机制的理解很重要。机器学习分析用于检查区分持续性痛苦 PLE 的最重要基线因素。
我们使用青少年大脑认知发展(ABCD)研究中 PLE 的 3 个时间点(9-13 岁)的数据,创建了以下组:持续性痛苦 PLE 个体(n=305)、短暂性痛苦 PLE 个体(n=374)以及在人口统计学上与持续性痛苦 PLE 组(n=305)或短暂性痛苦 PLE 组(n=374)相匹配的低水平 PLE 个体。随机森林分类模型用于区分持续性痛苦 PLE 与低水平 PLE、短暂性痛苦 PLE 与低水平 PLE 以及持续性痛苦 PLE 与短暂性痛苦 PLE。模型使用确定的基线预测因子作为输入特征(即认知、神经[皮质厚度、静息状态功能连接]、发育里程碑延迟、内化症状、不良童年经历)进行训练。
区分持续性痛苦 PLE 与低水平 PLE 的模型显示出最高的准确性(测试样本准确性=69.33%;95%CI,61.29%-76.59%)。最重要的预测因子包括内化症状、不良童年经历和认知功能。区分持续性 PLE 与短暂性痛苦 PLE 的模型性能通常较差。
模型性能指标表明,虽然大多数重要因素在模型中重叠(例如,内化症状),但不良童年经历对于预测持续性痛苦 PLE 尤为重要。机器学习分析证明对于从最不具有临床相关性的组中区分最具临床相关性的组很有用,但对于在 PLE 持续性方面存在差异的具有临床相关性的组之间的区分能力有限。