Suppr超能文献

通过 BioFire® FilmArray® 肺炎 panel 鉴定 COVID-19 危重症患者中的细菌共检出:系统评价和荟萃分析。

Identification of bacterial co-detections in COVID-19 critically Ill patients by BioFire® FilmArray® pneumonia panel: a systematic review and meta-analysis.

机构信息

BioFire Diagnostics, LLC, Salt Lake City, Utah, USA; College of Pharmacy, University of Utah Health, Salt Lake City, Utah, USA.

BioFire Diagnostics, LLC, Salt Lake City, Utah, USA.

出版信息

Diagn Microbiol Infect Dis. 2021 Nov;101(3):115476. doi: 10.1016/j.diagmicrobio.2021.115476. Epub 2021 Jul 1.

Abstract

Among critically ill COVID-19 patients, bacterial coinfections may occur, and timely appropriate therapy may be limited with culture-based microbiology due to turnaround time and diagnostic yield challenges (e.g. antibiotic pre-exposure). We performed a systematic review and meta-analysis of the impact of BioFire® FilmArray® Pneumonia Panel in detecting bacteria and clinical management among critically ill COVID-19 patients admitted to the ICU. Seven studies with 558 patients were included. Antibiotic use before respiratory sampling occurred in 28-79% of cases. The panel incidence of detections was 33% (95% CI 0.25 to 0.41, I=32%) while culture yielded 18% (95% CI 0.02 to 0.45; I=93%). The panel was associated with approximately a 1 and 2 day decrease in turnaround for identification and common resistance targets, respectively. The panel may be an important tool for clinicians to improve antimicrobial use in critically ill COVID-19 patients.

摘要

在危重症 COVID-19 患者中,可能会发生细菌合并感染,由于培养相关的微生物学存在周转时间和诊断产量方面的挑战(例如抗生素暴露前),及时适当的治疗可能会受到限制。我们对 BioFire® FilmArray® Pneumonia Panel 在 ICU 收治的危重症 COVID-19 患者中检测细菌和临床管理方面的影响进行了系统评价和荟萃分析。纳入了 7 项研究共 558 例患者。在进行呼吸道样本采集前,有 28-79%的患者使用了抗生素。该检测面板的检出率为 33%(95%CI 0.25 至 0.41,I=32%),而培养的检出率为 18%(95%CI 0.02 至 0.45;I=93%)。该检测面板分别使鉴定和常见耐药靶标的周转时间缩短了约 1 天和 2 天。该检测面板可能是临床医生改善危重症 COVID-19 患者抗菌药物使用的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bff/8245667/33cf710ddb70/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验