College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
Jinhua Water Supply Co. Ltd, Jinhua, 321004, China.
Chemosphere. 2022 Jan;286(Pt 1):131586. doi: 10.1016/j.chemosphere.2021.131586. Epub 2021 Jul 19.
Monitoring of disinfection by-products (DBPs) in water supply system is important to ensure safety of drinking water. Yet it is a laborious job. Developing predictive DBPs models using simple and easy parameters is a promising way. Yet current models could not be well applied into practice because of the improper dataset (e.g. not from real tap water) they used or involving the parameters that are difficult to measure or require expensive instruments. In this study, four simple and easy water quality parameters (temperature, pH, UVA and Cl) were used to predict trihalomethane (THMs) occurrence in tap water. Linear/log linear regression models (LRM) and radial basis function artificial neural network (RBF ANN) were adopted to develop the THMs models. 64 observations from tap water samples were used to develop and test models. Results showed that only one or two parameters entered LRMs, and their prediction ability was very limited (testing datasets: N = 46-69%, r = 0.334-0.459). Different from LRM, the prediction accuracy of RBF ANNs developed with pH, temperature, UVA and Cl can be improved continuously by tweaking the maximum number of neuron (MN) and Gaussian function spread (S) until it reached best. The optimum RBF ANNs of T-THMs, TCM and BDCM were obtained when setting MN = 20, S = 100, 100.1 and 60, respectively, where the N and r values for testing datasets reached 85-92% and 0.813-0.886, respectively. Accurate predictions of THMs by RBF ANNs with these four simple and easy parameters paved an economic and convenient way for THMs monitoring in real water supply system.
监测供水系统中的消毒副产物(DBPs)对于确保饮用水安全非常重要。然而,这是一项繁琐的工作。使用简单易用的参数开发预测性 DBP 模型是一种很有前途的方法。然而,由于当前模型使用的数据集不当(例如,不是来自实际自来水)或涉及难以测量或需要昂贵仪器的参数,因此无法很好地应用于实践。在这项研究中,使用四个简单易用的水质参数(温度、pH 值、UVA 和 Cl)来预测自来水中三卤甲烷(THMs)的出现。采用线性/对数线性回归模型(LRM)和径向基函数人工神经网络(RBF ANN)来开发 THMs 模型。使用来自自来水样本的 64 个观测值来开发和测试模型。结果表明,只有一个或两个参数进入 LRM,其预测能力非常有限(测试数据集:N=46-69%,r=0.334-0.459)。与 LRM 不同,通过调整最大神经元数(MN)和高斯函数扩展(S),可以不断提高 pH 值、温度、UVA 和 Cl 开发的 RBF ANN 的预测精度,直到达到最佳状态。当 MN=20、S=100、100.1 和 60 时,分别获得 T-THMs、TCM 和 BDCM 的最佳 RBF ANN,其中测试数据集的 N 和 r 值分别达到 85-92%和 0.813-0.886。RBF ANN 可以使用这四个简单易用的参数准确预测 THMs,为实际供水系统中的 THMs 监测提供了一种经济便捷的方法。