Department of Physics, Sathyabama Institute of Science and Technology, Chennai, India.
Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia.
Artif Organs. 2021 Dec;45(12):1501-1512. doi: 10.1111/aor.14045. Epub 2021 Aug 3.
The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
骨组织工程的主要作用是修复受损的骨骼,促进受伤骨骼的快速恢复。然而,一些研究中的金属植入物存在应力屏蔽、可触知性、生物相容性等问题。因此,由聚合物制成的可生物降解支架引起了研究人员的广泛关注,从而为组织工程领域提供了许多替代材料,这些材料的功能与天然骨骼相似。在这里,我们介绍了一种新型复合材料的制备和测试,即在聚乳酸(PLA)支架上涂覆掺镁羟基磷灰石(HAp)的玻璃化聚乳酸(PLA),其中聚乙烯醇(PVA)用作粘合剂。对于复合材料的形成,使用 Creality Ender-3 pro High Precision 3D 打印机,通过 Catia 设计软件操作的 FSD 机器上的 Shape tool 3D 技术进行。对复合材料的结晶度(XRD)、表面功能(FTIR)、形貌(FESEM)、生物相容性(溶血和蛋白质吸收)和机械性能(应力-应变和最大压缩强度)进行了表征。粉末 XRD 分析证实了 HAp 即使在掺杂 Mg 后仍具有半结晶性质和完整的结构,而 FTIR 研究则证实了 Mg-HAp/PVA@PLA 复合材料的成功形成。FESEM 提供的分析表明,具有 3D 多孔结构和定义明确的形态,可有效输送营养物质,生物相容性研究表明,该复合材料与血液相容,表面足够适合蛋白质吸收。最后,复合材料的抗菌活性(针对金黄色葡萄球菌和大肠杆菌)和机械性能测试分别支持对微生物活性生长的增强抑制和最大压缩强度。基于生物相容性、抗菌活性和机械阻力的研究结果,所制备的 Mg-HAp/PVA@PLA 复合材料非常适合作为一种有前途的生物材料平台,用于骨科应用,通过对骨折的切开复位内固定和内部修复发挥作用。