Suppr超能文献

ELAVL4、剪接和谷氨酸能功能障碍先于 MAPT 突变脑类器官中的神经元丢失。

ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids.

机构信息

Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.

Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Cell. 2021 Aug 19;184(17):4547-4563.e17. doi: 10.1016/j.cell.2021.07.003. Epub 2021 Jul 26.

Abstract

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.

摘要

额颞叶痴呆(FTD)由于 MAPT 突变导致 tau 的病理性积累和谷氨酸能皮质神经元死亡,其具体机制尚不清楚。我们使用表达 tau-V337M 的人诱导多能干细胞(iPSC)衍生的大脑类器官和同源校正对照来发现突变引起的神经退行性变之前的早期改变。在 2 个月时,突变体类器官表现出 MAPT、谷氨酸能信号通路和调节因子(包括 RNA 结合蛋白 ELAVL4)的上调表达,以及应激颗粒的增加。在接下来的 4 个月中,突变体类器官积累了剪接变化、自噬功能障碍以及 tau 和 P-tau-S396 的堆积。到 6 个月时,tau-V337M 类器官表现出特定的谷氨酸能神经元丧失,这在 FTD 患者中可见。突变神经元易受谷氨酸毒性影响,这种毒性可以通过 PIKFYVE 激酶抑制剂 apilimod 进行药理学挽救。我们的研究结果展示了一系列发生在神经退行性变之前的事件,揭示了与谷氨酸信号相关的分子途径,为 FTD 的治疗干预提供了潜在靶点。

相似文献

1
ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids.
Cell. 2021 Aug 19;184(17):4547-4563.e17. doi: 10.1016/j.cell.2021.07.003. Epub 2021 Jul 26.
4
Human tau mutations in cerebral organoids induce a progressive dyshomeostasis of cholesterol.
Stem Cell Reports. 2022 Sep 13;17(9):2127-2140. doi: 10.1016/j.stemcr.2022.07.011. Epub 2022 Aug 18.
7
Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability.
Stem Cell Reports. 2016 Sep 13;7(3):325-340. doi: 10.1016/j.stemcr.2016.08.001. Epub 2016 Sep 1.

引用本文的文献

2
Scalable production of human cortical organoids using a biocompatible polymer.
Nat Biomed Eng. 2025 Jun 27. doi: 10.1038/s41551-025-01427-3.
3
Alternative splicing in stem cells and development: research progress and emerging technologies.
Cell Regen. 2025 Jun 4;14(1):20. doi: 10.1186/s13619-025-00238-w.
5
MRAS: Master Regulator Analysis of Alternative Splicing.
Adv Sci (Weinh). 2025 Jun;12(21):e2414493. doi: 10.1002/advs.202414493. Epub 2025 May 5.
6
Bioengineering innovations for neural organoids with enhanced fidelity and function.
Cell Stem Cell. 2025 May 1;32(5):689-709. doi: 10.1016/j.stem.2025.03.014.
7
The potential of brain organoids in addressing the heterogeneity of synucleinopathies.
Cell Mol Life Sci. 2025 Apr 28;82(1):188. doi: 10.1007/s00018-025-05686-w.
8
Brain organoids: building higher-order complexity and neural circuitry models.
Trends Biotechnol. 2025 Jul;43(7):1583-1598. doi: 10.1016/j.tibtech.2025.02.009. Epub 2025 Apr 12.
9
GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau.
Nat Commun. 2025 Apr 9;16(1):3312. doi: 10.1038/s41467-025-58585-w.

本文引用的文献

1
RNA-Binding Protein HuD as a Versatile Factor in Neuronal and Non-Neuronal Systems.
Biology (Basel). 2021 Apr 23;10(5):361. doi: 10.3390/biology10050361.
2
Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components.
Neuron. 2021 May 19;109(10):1675-1691.e9. doi: 10.1016/j.neuron.2021.03.026. Epub 2021 Apr 12.
3
TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau.
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2014188118.
4
Dream: powerful differential expression analysis for repeated measures designs.
Bioinformatics. 2021 Apr 19;37(2):192-201. doi: 10.1093/bioinformatics/btaa687.
7
Cell stress in cortical organoids impairs molecular subtype specification.
Nature. 2020 Feb;578(7793):142-148. doi: 10.1038/s41586-020-1962-0. Epub 2020 Jan 29.
8
Chromatin accessibility dynamics in a model of human forebrain development.
Science. 2020 Jan 24;367(6476). doi: 10.1126/science.aay1645.
9
Dysregulation of RNA Splicing in Tauopathies.
Cell Rep. 2019 Dec 24;29(13):4377-4388.e4. doi: 10.1016/j.celrep.2019.11.093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验