Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
Cell. 2021 Aug 19;184(17):4547-4563.e17. doi: 10.1016/j.cell.2021.07.003. Epub 2021 Jul 26.
Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.
额颞叶痴呆(FTD)由于 MAPT 突变导致 tau 的病理性积累和谷氨酸能皮质神经元死亡,其具体机制尚不清楚。我们使用表达 tau-V337M 的人诱导多能干细胞(iPSC)衍生的大脑类器官和同源校正对照来发现突变引起的神经退行性变之前的早期改变。在 2 个月时,突变体类器官表现出 MAPT、谷氨酸能信号通路和调节因子(包括 RNA 结合蛋白 ELAVL4)的上调表达,以及应激颗粒的增加。在接下来的 4 个月中,突变体类器官积累了剪接变化、自噬功能障碍以及 tau 和 P-tau-S396 的堆积。到 6 个月时,tau-V337M 类器官表现出特定的谷氨酸能神经元丧失,这在 FTD 患者中可见。突变神经元易受谷氨酸毒性影响,这种毒性可以通过 PIKFYVE 激酶抑制剂 apilimod 进行药理学挽救。我们的研究结果展示了一系列发生在神经退行性变之前的事件,揭示了与谷氨酸信号相关的分子途径,为 FTD 的治疗干预提供了潜在靶点。