Suppr超能文献

首个临床龙门式质子治疗系统的调试及初步经验

Commissioning and initial experience with the first clinical gantry-mounted proton therapy system.

作者信息

Zhao Tianyu, Sun Baozhou, Grantham Kevin, Rankine Leith, Cai Bin, Goddu Sreekrishna M, Santanam Lakshmi, Knutson Nels, Zhang Tiezhi, Reilly Michael, Bottani Beth, Bradley Jeffrey, Mutic Sasa, Klein Eric E

机构信息

Washington University School of Medicine.

出版信息

J Appl Clin Med Phys. 2016 Mar 8;17(2):24-40. doi: 10.1120/jacmp.v17i2.5868.

Abstract

The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry-mounted, single-room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C-inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons.

摘要

本研究的目的是描述Mevion S250质子治疗系统的全面调试过程和初步临床经验,该系统是一种安装在机架上的单室质子治疗平台,已在美国密苏里州圣路易斯市巴恩斯-犹太医院的S. Lee Kling质子治疗中心临床应用。Mevion S250系统将紧凑型同步回旋加速器与C型内机架、图像引导系统和六维机器人治疗床集成到一个束流输送平台中。我们介绍了我们的调试过程和初步临床经验,包括:i)CT校准;ii)束流数据采集和机器特性;iii)治疗计划系统的剂量学调试;iv)通过影像与放射肿瘤学核心认证过程进行验证,包括对脊柱、前列腺、脑和肺部体模的照射;v)图像引导系统定位准确性评估;以及vi)初步临床经验。临床上,该系统运行良好,为质子治疗疾病提供了一个出色的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/5874960/cb65235bfd65/ACM2-17-24-g001.jpg

相似文献

1
Commissioning and initial experience with the first clinical gantry-mounted proton therapy system.
J Appl Clin Med Phys. 2016 Mar 8;17(2):24-40. doi: 10.1120/jacmp.v17i2.5868.
2
Commissioning of the world's first compact pencil-beam scanning proton therapy system.
J Appl Clin Med Phys. 2018 Jan;19(1):94-105. doi: 10.1002/acm2.12225. Epub 2017 Nov 20.
4
A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging.
Radiat Oncol. 2019 Dec 11;14(1):224. doi: 10.1186/s13014-019-1436-4.
5
A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance.
Br J Radiol. 2017 Nov;90(1079):20170266. doi: 10.1259/bjr.20170266. Epub 2017 Oct 9.
6
A clinically feasible method for the detection of potential collision in proton therapy.
Med Phys. 2012 Nov;39(11):7094-101. doi: 10.1118/1.4760988.
7
TOPAS Simulation of the Mevion S250 compact proton therapy unit.
J Appl Clin Med Phys. 2017 May;18(3):88-95. doi: 10.1002/acm2.12077. Epub 2017 Apr 26.
8
Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH).
Med Phys. 2021 Jul;48(7):4017-4026. doi: 10.1002/mp.14933. Epub 2021 May 25.

引用本文的文献

1
Commissioning of a novel gantry-less proton therapy system.
Front Oncol. 2024 Nov 7;14:1417393. doi: 10.3389/fonc.2024.1417393. eCollection 2024.
2
ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data.
Phys Imaging Radiat Oncol. 2024 Aug 5;31:100621. doi: 10.1016/j.phro.2024.100621. eCollection 2024 Jul.
3
Brainstem Toxicity in Pediatric Patients Treated with Protons Using a Single-vault Synchrocyclotron System.
Int J Part Ther. 2022 Jun 3;9(1):12-17. doi: 10.14338/IJPT-22-00008.1. eCollection 2022 Summer.
5
Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy.
Front Oncol. 2021 Dec 9;11:780025. doi: 10.3389/fonc.2021.780025. eCollection 2021.
6
Development of a storage phosphor imaging system for proton pencil beam spot profile determination.
Med Phys. 2021 Sep;48(9):5459-5471. doi: 10.1002/mp.15139. Epub 2021 Aug 10.
7
Particle therapy in the future of precision therapy.
Br J Radiol. 2020 Oct 1;93(1114):20200183. doi: 10.1259/bjr.20200183. Epub 2020 Aug 14.
8
Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system.
J Appl Clin Med Phys. 2020 Feb;21(2):26-37. doi: 10.1002/acm2.12803. Epub 2020 Jan 3.
9
A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging.
Radiat Oncol. 2019 Dec 11;14(1):224. doi: 10.1186/s13014-019-1436-4.
10
Beam commissioning of the first compact proton therapy system with spot scanning and dynamic field collimation.
Br J Radiol. 2020 Mar;93(1107):20190598. doi: 10.1259/bjr.20190598. Epub 2019 Dec 13.

本文引用的文献

1
An anthropomorphic spine phantom for proton beam approval in NCI-funded trials.
J Appl Clin Med Phys. 2014 May 8;15(3):4742. doi: 10.1120/jacmp.v15i3.4742.
2
Range uncertainties in proton therapy and the role of Monte Carlo simulations.
Phys Med Biol. 2012 Jun 7;57(11):R99-117. doi: 10.1088/0031-9155/57/11/R99. Epub 2012 May 9.
4
Incorporating partial shining effects in proton pencil-beam dose calculation.
Phys Med Biol. 2008 Feb 7;53(3):605-16. doi: 10.1088/0031-9155/53/3/007. Epub 2008 Jan 10.
6
Optimization of current modulation function for proton spread-out Bragg peak fields.
Med Phys. 2006 May;33(5):1281-7. doi: 10.1118/1.2188072.
7
Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma.
Int J Radiat Oncol Biol Phys. 2004 Mar 1;58(3):727-34. doi: 10.1016/S0360-3016(03)01574-8.
8
Monitor unit calculations for range-modulated spread-out Bragg peak fields.
Phys Med Biol. 2003 Sep 7;48(17):2797-808. doi: 10.1088/0031-9155/48/17/305.
9
[Evaluation of the electron density phantom CIRS Model 62].
Z Med Phys. 2001;11(1):25-32. doi: 10.1016/s0939-3889(15)70384-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验