School of Biological Sciences, Ilinois State University, Normal, Illinois 61790.
School of Biological Sciences, Ilinois State University, Normal, Illinois 61790
J Neurosci. 2021 Sep 8;41(36):7607-7622. doi: 10.1523/JNEUROSCI.0101-21.2021. Epub 2021 Jul 28.
Peptide neuromodulation has been implicated to shield neuronal activity from acute temperature changes that can otherwise lead to loss of motor control or failure of vital behaviors. However, the cellular actions neuropeptides elicit to support temperature-robust activity remain unknown. Here, we find that peptide neuromodulation restores rhythmic bursting in temperature-compromised central pattern generator (CPG) neurons by counteracting membrane shunt and increasing dendritic electrical spread. We show that acutely rising temperatures reduced spike generation and interrupted ongoing rhythmic motor activity in the crustacean gastric mill CPG. Neuronal release and extrinsic application of tachykinin-related peptide Ia (CabTRP Ia), a substance-P-related peptide, restored rhythmic activity. Warming led to a significant decrease in membrane resistance and a shunting of the dendritic signals in the main gastric mill CPG neuron. Using a combination of fluorescent calcium imaging and electrophysiology, we observed that postsynaptic potentials and antidromic action potentials propagated less far within the dendritic neuropil as the system warmed. In the presence of CabTRP Ia, membrane shunt decreased and both postsynaptic potentials and antidromic action potentials propagated farther. At elevated temperatures, CabTRP Ia restored dendritic electrical spread or extended it beyond that at cold temperatures. Selective introduction of the CabTRP Ia conductance using a dynamic clamp demonstrated that the CabTRP Ia voltage-dependent conductance was sufficient to restore rhythmic bursting. Our findings demonstrate that a substance-P-related neuropeptide can boost dendritic electrical spread to maintain neuronal activity when perturbed and reveals key neurophysiological components of neuropeptide actions that support pattern generation in temperature-compromised conditions. Changes in body temperature can have detrimental consequences for the well-being of an organism. Temperature-dependent changes in neuronal activity can be especially dangerous if they affect vital behaviors. Understanding how temperature changes disrupt neuronal activity and identifying how to ameliorate such effects is critically important. Our study of a crustacean circuit shows that warming disrupts rhythmic neuronal activity by increasing membrane shunt and reducing dendritic electrical spread in a key circuit neuron. Through the ionic conductance activated by it, substance-P-related peptide modulation restored electrical spread and counteracted the detrimental temperature effects on rhythmic activity. Because neuropeptides are commonly implicated in sustaining neuronal activity during perturbation, our results provide a promising mechanism to support temperature-robust activity.
肽类神经调节被认为可以保护神经元活动免受急性温度变化的影响,否则这些变化可能导致运动控制丧失或重要行为失败。然而,支持温度稳健活动的神经肽所引起的细胞作用仍然未知。在这里,我们发现肽类神经调节通过抵消膜分流和增加树突电传播来恢复受温度影响的中枢模式发生器(CPG)神经元的节律性爆发。我们表明,急性升温会减少甲壳类动物胃磨 CPG 中的尖峰生成并中断正在进行的节律性运动活动。神经元释放和外源性应用速激肽相关肽 Ia(CabTRP Ia),一种与 P 物质相关的肽,恢复了节律性活动。升温导致胃磨主要 CPG 神经元的膜电阻显著降低,并且树突信号分流。使用荧光钙成像和电生理学的组合,我们观察到随着系统升温,突触后电位和逆行动作电位在树突神经突内传播得更远。在 CabTRP Ia 的存在下,膜分流减少,并且突触后电位和逆行动作电位传播得更远。在高温下,CabTRP Ia 恢复了树突电传播,或者将其扩展到低温下。使用动态钳位选择性引入 CabTRP Ia 电导表明,CabTRP Ia 的电压依赖性电导足以恢复节律性爆发。我们的研究结果表明,一种与 P 物质相关的神经肽可以在受到干扰时增强树突电传播以维持神经元活动,并揭示了神经肽作用支持受温度影响的模式产生的关键神经生理成分。体温变化会对生物体的健康产生不利影响。如果神经元活动的温度依赖性变化会影响重要行为,则尤其危险。了解温度变化如何破坏神经元活动以及如何减轻这种影响至关重要。我们对甲壳类动物电路的研究表明,升温通过增加膜分流和降低关键电路神经元中的树突电传播来破坏节律性神经元活动。通过其激活的离子电导,与 P 物质相关的肽调节恢复了电传播,并抵消了温度对节律性活动的不利影响。由于神经肽通常被认为在受到干扰时维持神经元活动,因此我们的结果提供了一种有希望的机制来支持温度稳健的活动。