Suppr超能文献

心血管生物材料诱导的组织反应、巨噬细胞表型和内在钙化:在大鼠皮下植入模型中能否预测临床再生潜力?

Tissue response, macrophage phenotype, and intrinsic calcification induced by cardiovascular biomaterials: Can clinical regenerative potential be predicted in a rat subcutaneous implant model?

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

J Biomed Mater Res A. 2022 Feb;110(2):245-256. doi: 10.1002/jbm.a.37280. Epub 2021 Jul 29.

Abstract

The host immune response to an implanted biomaterial, particularly the phenotype of infiltrating macrophages, is a key determinant of biocompatibility and downstream remodeling outcome. The present study used a subcutaneous rat model to compare the tissue response, including macrophage phenotype, remodeling potential, and calcification propensity of a biologic scaffold composed of glutaraldehyde-fixed bovine pericardium (GF-BP), the standard of care for heart valve replacement, with those of an electrospun polycarbonate-based supramolecular polymer scaffold (ePC-UPy), urinary bladder extracellular matrix (UBM-ECM), and a polypropylene mesh (PP). The ePC-UPy and UBM-ECM materials induced infiltration of mononuclear cells throughout the thickness of the scaffold within 2 days and neovascularization at 14 days. GF-BP and PP elicited a balance of pro-inflammatory (M1-like) and anti-inflammatory (M2-like) macrophages, while UBM-ECM and ePC-UPy supported a dominant M2-like macrophage phenotype at all timepoints. Relative to GF-BP, ePC-UPy was markedly less susceptible to calcification for the 180 day duration of the study. UBM-ECM induced an archetypical constructive remodeling response dominated by M2-like macrophages and the PP caused a typical foreign body reaction dominated by M1-like macrophages. The results of this study highlight the divergent macrophage and host remodeling response to biomaterials with distinct physical and chemical properties and suggest that the rat subcutaneous implantation model can be used to predict in vivo biocompatibility and regenerative potential for clinical application of cardiovascular biomaterials.

摘要

宿主对植入生物材料的免疫反应,特别是浸润巨噬细胞的表型,是决定生物相容性和下游重塑结果的关键因素。本研究采用皮下大鼠模型,比较了由戊二醛固定牛心包(GF-BP)组成的生物支架的组织反应,包括巨噬细胞表型、重塑潜力和钙化倾向,GF-BP 是心脏瓣膜置换的标准治疗方法,与静电纺丝聚碳酸酯基超分子聚合物支架(ePC-UPy)、尿囊膜细胞外基质(UBM-ECM)和聚丙烯网(PP)的组织反应。ePC-UPy 和 UBM-ECM 材料在 2 天内诱导单核细胞渗透到支架的整个厚度,并在 14 天内诱导新生血管形成。GF-BP 和 PP 诱导产生了促炎(M1 样)和抗炎(M2 样)巨噬细胞的平衡,而 UBM-ECM 和 ePC-UPy 在所有时间点都支持占主导地位的 M2 样巨噬细胞表型。与 GF-BP 相比,ePC-UPy 在研究的 180 天内明显不易钙化。UBM-ECM 诱导了以 M2 样巨噬细胞为主的典型建设性重塑反应,而 PP 引起了以 M1 样巨噬细胞为主的典型异物反应。这项研究的结果强调了具有不同物理和化学性质的生物材料对巨噬细胞和宿主重塑反应的差异,并表明大鼠皮下植入模型可用于预测心血管生物材料的体内生物相容性和再生潜力。

相似文献

3
Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype.
J Biomed Mater Res A. 2017 Jan;105(1):138-147. doi: 10.1002/jbm.a.35894. Epub 2016 Sep 21.
4
Macrophage polarization in response to ECM coated polypropylene mesh.
Biomaterials. 2014 Aug;35(25):6838-49. doi: 10.1016/j.biomaterials.2014.04.115. Epub 2014 May 21.
5
In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation.
Biomaterials. 2016 Jun;92:1-12. doi: 10.1016/j.biomaterials.2016.03.024. Epub 2016 Mar 19.
6
Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33.
Tissue Eng Part A. 2022 Oct;28(19-20):867-878. doi: 10.1089/ten.TEA.2022.0006. Epub 2022 Aug 25.
7
Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine.
Acta Biomater. 2022 Oct 1;151:106-117. doi: 10.1016/j.actbio.2022.08.015. Epub 2022 Aug 13.
8
The effect of cell debris within biologic scaffolds upon the macrophage response.
J Biomed Mater Res A. 2017 Aug;105(8):2109-2118. doi: 10.1002/jbm.a.36055. Epub 2017 Apr 12.
10
Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages.
Biomaterials. 2021 Feb;269:120667. doi: 10.1016/j.biomaterials.2021.120667. Epub 2021 Jan 7.

引用本文的文献

1
Histological assessment of a novel restorative coronary artery bypass graft in a chronic ovine model.
Front Bioeng Biotechnol. 2025 Feb 10;13:1488794. doi: 10.3389/fbioe.2025.1488794. eCollection 2025.
2
Living plastics from plasticizer-assisted thermal molding of silk protein.
Nat Commun. 2025 Jan 2;16(1):52. doi: 10.1038/s41467-024-55097-x.
3
Electrospun fiber-based immune engineering in regenerative medicine.
Smart Med. 2024 Feb 24;3(1):e20230034. doi: 10.1002/SMMD.20230034. eCollection 2024 Feb.
4
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
Prog Mater Sci. 2023 Oct;139. doi: 10.1016/j.pmatsci.2023.101173. Epub 2023 Jul 26.
5
Immunomodulatory contribution of mast cells to the regenerative biomaterial microenvironment.
NPJ Regen Med. 2023 Sep 20;8(1):53. doi: 10.1038/s41536-023-00324-0.
6
Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies.
Bioeng Transl Med. 2023 Mar 1;8(4):e10501. doi: 10.1002/btm2.10501. eCollection 2023 Jul.
7
The effect of chronic kidney disease on tissue formation of tissue-engineered vascular grafts.
APL Bioeng. 2023 May 23;7(2):026107. doi: 10.1063/5.0138808. eCollection 2023 Jun.
8
Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week.
J Am Coll Cardiol. 2023 Mar 14;81(10):994-1003. doi: 10.1016/j.jacc.2022.12.022.

本文引用的文献

1
A Novel Restorative Pulmonary Valve Conduit: Early Outcomes of Two Clinical Trials.
Front Cardiovasc Med. 2021 Mar 4;7:583360. doi: 10.3389/fcvm.2020.583360. eCollection 2020.
2
Urinary Bladder Matrix Scaffolds Promote Pericardium Repair in a Porcine Model.
J Surg Res. 2020 May;249:216-224. doi: 10.1016/j.jss.2019.12.033. Epub 2020 Jan 27.
3
Increased Expression of FGF-21 Negatively Affects Bone Homeostasis in Dystrophin/Utrophin Double Knockout Mice.
J Bone Miner Res. 2020 Apr;35(4):738-752. doi: 10.1002/jbmr.3932. Epub 2019 Dec 30.
5
Early Insight Into In Vivo Recellularization of Cell-Free Allogenic Heart Valves.
Ann Thorac Surg. 2019 Aug;108(2):581-589. doi: 10.1016/j.athoracsur.2019.02.058. Epub 2019 Mar 28.
6
Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells.
Front Physiol. 2018 Nov 20;9:1635. doi: 10.3389/fphys.2018.01635. eCollection 2018.
7
Divergent immune responses to synthetic and biological scaffolds.
Biomaterials. 2019 Feb;192:405-415. doi: 10.1016/j.biomaterials.2018.11.002. Epub 2018 Nov 9.
8
Morphology and mechanisms of a novel absorbable polymeric conduit in the pulmonary circulation of sheep.
Cardiovasc Pathol. 2019 Jan-Feb;38:31-38. doi: 10.1016/j.carpath.2018.10.008. Epub 2018 Oct 25.
9
The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration.
Acta Biomater. 2019 Jan 1;83:1-12. doi: 10.1016/j.actbio.2018.09.056. Epub 2018 Sep 29.
10
Comparison of in vivo remodeling of urinary bladder matrix and acellular dermal matrix in an ovine model.
Regen Med. 2018 Oct;13(7):759-773. doi: 10.2217/rme-2018-0091. Epub 2018 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验