Kossakowski Jolanda J, Waldorp Lourens J, van der Maas Han L J
Department of Psychology, University of Amsterdam.
Psychol Methods. 2021 Dec;26(6):719-742. doi: 10.1037/met0000390. Epub 2021 Jul 29.
Estimating causal relations between two or more variables is an important topic in psychology. Establishing a causal relation between two variables can help us in answering that question of why something happens. However, using solely observational data are insufficient to get the complete causal picture. The combination of observational and experimental data may give adequate information to properly estimate causal relations. In this study, we consider the conditions where estimating causal relations might work and we show how well different algorithms, namely the Peter and Clark algorithm, the Downward Ranking of Feed-Forward Loops algorithm, the Transitive Reduction for Weighted Signed Digraphs algorithm, the Invariant Causal Prediction (ICP) algorithm and the Hidden Invariant Causal Prediction (HICP) algorithm, determine causal relations in a simulation study. Results showed that the ICP and the HICP algorithms perform best in most simulation conditions. We also apply every algorithm to an empirical example to show the similarities and differences between the algorithms. We believe that the combination of the ICP and the HICP algorithm may be suitable to be used in future research. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
估计两个或多个变量之间的因果关系是心理学中的一个重要课题。确定两个变量之间的因果关系有助于我们回答某件事情为何发生的问题。然而,仅使用观测数据不足以获得完整的因果关系图景。观测数据和实验数据的结合可能会提供足够的信息来正确估计因果关系。在本研究中,我们考虑了估计因果关系可能有效的条件,并展示了不同算法,即彼得和克拉克算法、前馈循环向下排序算法、加权有向图的传递约简算法、不变因果预测(ICP)算法和隐藏不变因果预测(HICP)算法,在模拟研究中确定因果关系的效果如何。结果表明,ICP算法和HICP算法在大多数模拟条件下表现最佳。我们还将每种算法应用于一个实证例子,以展示这些算法之间的异同。我们认为,ICP算法和HICP算法的结合可能适用于未来的研究。(PsycInfo数据库记录(c)2022美国心理学会,保留所有权利)