基于内镜图像使用预训练基础模型的迁移学习对慢性鼻-鼻窦炎的术后结果分析:一项多中心观察性研究

Postoperative outcome analysis of chronic rhinosinusitis using transfer learning with pre-trained foundation models based on endoscopic images: a multicenter, observational study.

作者信息

Gong Wentao, Chen Keguang, Chen Xiao, Liu Xueli, Li Zhen, Wang Li, Shi Yuxuan, Liu Quan, Sun Xicai, Huang Xinsheng, Luo Xu, Yu Hongmeng

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.

出版信息

Biomed Eng Online. 2025 Jul 27;24(1):95. doi: 10.1186/s12938-025-01428-y.

Abstract

BACKGROUND

This study developed a foundation model-based analytical framework for the analysis of postoperative endoscopic images in chronic rhinosinusitis (CRS). The framework leverages the standardized identification and reproducible results enabled by artificial intelligence algorithms, combined with the strengths of pre-trained foundation models in developing downstream applications. This approach effectively addresses the inherent challenge of strong subjectivity in conventional postoperative endoscopic evaluation for CRS.

METHODS

The postoperative sinus cavity status in CRS was classified into three states: "polyp", "edema", and "smooth", to establish an endoscopic image dataset. Using transfer learning based on pre-trained large models for endoscopic images, we developed an analytical model for postoperative outcome evaluation in CRS. Comparative studies with various traditional training methods were conducted to evaluate this approach, demonstrating that it can achieve satisfactory model performance even with limited datasets.

RESULTS

The endoscopic image-based pre-trained transfer learning model proposed in this study demonstrates significant advantages over conventional methods in diagnostic performance. In the precision evaluation for distinguishing smooth mucosa from rest conditions (edema and polyps), our model achieved mean accuracy and AUC values of 91.17% and 0.97, respectively, with specificity reaching 86.35% and sensitivity attaining 91.85%. This represents an approximate 4% improvement in mean accuracy compared to traditional algorithms. Notably, in the differential diagnosis between polyps and rest conditions (smooth mucosa and edema), the proposed algorithm attained mean accuracy and AUC values of 81.87% and 0.90, respectively, demonstrating specificity of 80.53% and sensitivity of 81.04%. This configuration shows a substantial 15% enhancement in mean accuracy relative to conventional diagnostic approaches.

CONCLUSION

The transfer learning algorithm model based on pre-trained foundation models can provide accurate and reproducible analysis of postoperative outcomes in CRS, effectively addressing the issue of high subjectivity in postoperative evaluation. With limited data, our model can achieve better generalization performance compared to traditional algorithms.

摘要

背景

本研究开发了一种基于基础模型的分析框架,用于分析慢性鼻窦炎(CRS)术后的内镜图像。该框架利用人工智能算法实现标准化识别和可重复结果,并结合预训练基础模型在开发下游应用方面的优势。这种方法有效解决了CRS传统术后内镜评估中主观性强的固有挑战。

方法

将CRS术后鼻窦腔状态分为“息肉”“水肿”和“光滑”三种状态,建立内镜图像数据集。利用基于预训练大型内镜图像模型的迁移学习,开发了CRS术后结果评估分析模型。与各种传统训练方法进行比较研究以评估该方法,结果表明即使数据集有限,该方法也能实现令人满意的模型性能。

结果

本研究提出的基于内镜图像的预训练迁移学习模型在诊断性能上比传统方法具有显著优势。在区分光滑黏膜与其他情况(水肿和息肉)的精度评估中,我们的模型平均准确率和AUC值分别达到91.17%和0.97,特异性达到86.35%,敏感性达到91.85%。与传统算法相比,平均准确率提高了约4%。值得注意的是,在息肉与其他情况(光滑黏膜和水肿)的鉴别诊断中,所提出的算法平均准确率和AUC值分别达到81.87%和0.90,特异性为80.53%,敏感性为81.04%。这种配置相对于传统诊断方法,平均准确率大幅提高了15%。

结论

基于预训练基础模型的迁移学习算法模型能够为CRS术后结果提供准确且可重复的分析,有效解决术后评估主观性高的问题。在数据有限的情况下,我们的模型与传统算法相比能实现更好的泛化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e613/12297428/8a1bb4ad0249/12938_2025_1428_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索