Suppr超能文献

利用 TROPOMI 数据和机器学习估算东亚地区的地表 NO 和 O 浓度。

Estimation of surface-level NO and O concentrations using TROPOMI data and machine learning over East Asia.

机构信息

Department of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.

Department of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.

出版信息

Environ Pollut. 2021 Nov 1;288:117711. doi: 10.1016/j.envpol.2021.117711. Epub 2021 Jul 16.

Abstract

In East Asia, air quality has been recognized as an important public health problem. In particular, the surface concentrations of air pollutants are closely related to human life. This study aims to develop models for estimating high spatial resolution surface concentrations of NO and O from TROPOspheric Monitoring Instrument (TROPOMI) data in East Asia. The machine learning was adopted by fusion of various satellite-based variables, numerical model-based meteorological variables, and land-use variables. Four machine learning approaches-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boost (XGB), and Light Gradient Boosting Machine (LGBM)-were evaluated and compared with Multiple Linear Regression (MLR) as a base statistical method. This study also modeled the NO and O concentrations over the ocean surface (i.e., land model for scheme 1 and ocean model for scheme 2). The estimated surface concentrations were validated through three cross-validation approaches (i.e., random, temporal, and spatial). The results showed that the NO model produced R of 0.63-0.70 and normalized root-mean-square-error (nRMSE) of 38.3-42.2% and the O model resulted in R of 0.65-0.78 and nRMSE of 19.6-24.7% for scheme 1. The indirect validation based on the stations near the coastline for scheme 2 showed slight decrease (~0.3-2.4%) in nRMSE when compared to scheme 1. The contributions of input variables to the models were analyzed based on SHapely Additive exPlanations (SHAP) values. The NO vertical column density among the TROPOMI-derived variables showed the largest contribution in both the NO and O models.

摘要

在东亚,空气质量已被确认为一个重要的公共卫生问题。特别是,空气污染物的地表浓度与人类生活密切相关。本研究旨在开发基于 TROPOspheric Monitoring Instrument(TROPOMI)数据估算东亚高空间分辨率地表 NO 和 O 浓度的模型。采用机器学习方法融合了各种卫星变量、数值模型气象变量和土地利用变量。评估并比较了四种机器学习方法(支持向量回归(SVR)、随机森林(RF)、极端梯度提升(XGB)和轻梯度提升机(LGBM))与多元线性回归(MLR)作为基础统计方法。本研究还对海洋表面的 NO 和 O 浓度进行建模(即方案 1 的陆地模型和方案 2 的海洋模型)。通过三种交叉验证方法(即随机、时间和空间)对估计的地表浓度进行验证。结果表明,NO 模型的 R 值为 0.63-0.70,nRMSE 值为 38.3-42.2%,O 模型的 R 值为 0.65-0.78,nRMSE 值为 19.6-24.7%,方案 1。基于方案 1 沿海地区附近站点的间接验证表明,nRMSE 略有下降(~0.3-2.4%)。基于 SHapely Additive exPlanations(SHAP)值分析了输入变量对模型的贡献。TROPOMI 衍生变量中的 NO 垂直柱密度在 NO 和 O 模型中表现出最大的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验