Suppr超能文献

环状 RNA 与复杂疾病:从实验结果到计算模型。

Circular RNAs and complex diseases: from experimental results to computational models.

机构信息

School of Information and Control Engineering, China University of Mining and Technology.

School of Computer Science and Software Engineering, University of Science and Technology Liaoning.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab286.

Abstract

Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data.

摘要

环状 RNA(circRNAs)是一类具有多种生物学功能的单链、共价闭合的 RNA 分子。研究表明,circRNAs 参与多种生物学过程,并在各种复杂疾病的发生发展中发挥重要作用,因此鉴定 circRNA-疾病关联有助于疾病的诊断和治疗。在这篇综述中,我们总结了 circRNAs 的发现、分类和功能,并介绍了与 circRNAs 相关的四种重要疾病。然后,我们列出了一些重要的、可公开获取的数据库,其中包含 circRNAs 的全面注释资源和经过实验验证的 circRNA-疾病关联。接下来,我们介绍了一些用于预测新型 circRNA-疾病关联的最新计算模型,并将它们分为基于网络算法和基于机器学习的模型两类。随后,我们总结了这些计算模型的预测性能评估方法。最后,我们从构建新的计算模型和积累 circRNA 相关数据的角度,分析了不同类型计算模型的优缺点,并提出了一些促进 circRNA-疾病关联识别发展的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/677e/8575014/e4f1059a57af/bbab286f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验