Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran.
School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Farmanieh Ave, Tajrish, District 1, Tehran 193955746, Iran.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae337.
Drug repositioning, the identification of new therapeutic uses for existing drugs, is crucial for accelerating drug discovery and reducing development costs. Some methods rely on heterogeneous networks, which may not fully capture the complex relationships between drugs and diseases. However, integrating diverse biological data sources offers promise for discovering new drug-disease associations (DDAs). Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. However, the challenge lies in effectively integrating different biological data sources to identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms.
In response to this challenge, we present MiRAGE, a novel computational method for drug repositioning. MiRAGE leverages a three-step framework, comprising negative sampling using hard negative mining, classification employing random forest models, and feature selection based on feature importance. We evaluate MiRAGE on multiple benchmark datasets, demonstrating its superiority over state-of-the-art algorithms across various metrics. Notably, MiRAGE consistently outperforms other methods in uncovering novel DDAs. Case studies focusing on Parkinson's disease and schizophrenia showcase MiRAGE's ability to identify top candidate drugs supported by previous studies. Overall, our study underscores MiRAGE's efficacy and versatility as a computational tool for drug repositioning, offering valuable insights for therapeutic discoveries and addressing unmet medical needs.
药物重定位,即发现现有药物的新治疗用途,对于加速药物发现和降低开发成本至关重要。一些方法依赖于异构网络,这些网络可能无法充分捕捉药物和疾病之间的复杂关系。然而,整合多样化的生物数据源为发现新的药物-疾病关联(DDA)提供了希望。先前的证据表明,结合信息将有助于发现新的 DDA。然而,挑战在于如何有效地整合不同的生物数据源,根据药物-疾病的偶联机制,为特定疾病确定最有效的药物。
针对这一挑战,我们提出了 MiRAGE,这是一种用于药物重定位的新型计算方法。MiRAGE 利用了一个三步框架,包括使用硬负样本挖掘进行负样本采样、使用随机森林模型进行分类以及基于特征重要性进行特征选择。我们在多个基准数据集上评估了 MiRAGE,证明其在各种指标上优于最先进的算法。值得注意的是,MiRAGE 在发现新的 DDA 方面始终优于其他方法。以帕金森病和精神分裂症为重点的案例研究展示了 MiRAGE 识别以前研究支持的顶级候选药物的能力。总的来说,我们的研究强调了 MiRAGE 作为药物重定位计算工具的有效性和多功能性,为治疗发现和解决未满足的医疗需求提供了有价值的见解。