Suppr超能文献

小数据上的赫布学习助力高聚酰亚胺的实验发现。

Hebbian Learning on Small Data Enables Experimental Discovery of High Polyimides.

作者信息

Dennis Joseph M, Zubarev Dmitry Yu

机构信息

IBM Research, Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States.

出版信息

J Phys Chem A. 2021 Aug 12;125(31):6829-6835. doi: 10.1021/acs.jpca.1c02959. Epub 2021 Jul 30.

Abstract

We report a study combining computational design and experimental evaluation of polyimides with high glass transition temperatures: between 220 °C and 500 °C. The computational approach is based on the recently introduced competitive learning algorithm, supervised self-organizing maps (SUSI), which we recast as an ensemble method, e-SUSI. We use e-SUSI to solve both unsupervised and supervised/semisupervised learning tasks capturing structure-property relationships of high- polyimides historically studied at Almaden Research Center. Predictors trained on historical data were applied to the combinatorial library of novel polyimides and informed selection of the candidates for synthesis and characterization. In this manner, three new polyimides were prepared with values 281 °C, 282 °C, and 331 °C. The measured values closely agree with the predicted values 273 °C, 311 °C, and 335 °C, respectively. We discuss specific reasons that make the proposed computational design strategy attractive in rapid, deliverable-driven efforts with limited, small-batch data sets.

摘要

我们报告了一项将计算设计与玻璃化转变温度在220°C至500°C之间的聚酰亚胺实验评估相结合的研究。计算方法基于最近引入的竞争学习算法——监督自组织映射(SUSI),我们将其重塑为一种集成方法,即e-SUSI。我们使用e-SUSI来解决无监督以及监督/半监督学习任务,以捕捉历史上在阿尔马登研究中心研究的高聚酰亚胺的结构-性能关系。在历史数据上训练的预测器被应用于新型聚酰亚胺的组合库,并为合成和表征的候选物选择提供依据。通过这种方式,制备了三种新的聚酰亚胺,其玻璃化转变温度分别为281°C、282°C和331°C。测量值与预测值273°C、311°C和335°C分别非常吻合。我们讨论了在使用有限的小批量数据集进行快速、交付驱动的工作中,使所提出的计算设计策略具有吸引力的具体原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验