Suppr超能文献

基于机器学习利用实验数据预测有机化合物的玻璃化转变温度

Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds Using Experimental Data.

作者信息

Armeli Gianluca, Peters Jan-Hendrik, Koop Thomas

机构信息

Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany.

出版信息

ACS Omega. 2023 Mar 22;8(13):12298-12309. doi: 10.1021/acsomega.2c08146. eCollection 2023 Apr 4.

Abstract

Knowledge of the glass transition temperature of molecular compounds that occur in atmospheric aerosol particles is important for estimating their viscosity, as it directly influences the kinetics of chemical reactions and particle phase state. While there is a great diversity of organic compounds present in aerosol particles, for only a minor fraction of them experimental glass transition temperatures are known. Therefore, we have developed a machine learning model designed to predict the glass transition temperature of organic molecular compounds based on molecule-derived input variables. The procedure was chosen for this purpose. Two approaches using different sets of input variables were followed. The first one uses the number of selected functional groups present in the compound, while the second one generates descriptors from a SMILES (Simplified Molecular Input Line Entry System) string. Organic compounds containing carbon, hydrogen, oxygen, nitrogen, and halogen atoms are included. For improved results, both approaches can be combined with the melting temperature of the compound as an additional input variable. The results show that the predictions of both approaches show a similar mean absolute error of about 12-13 K, with the SMILES-based predictions performing slightly better. In general, the model shows good predictive power considering the diversity of the experimental input data. Furthermore, we also show that its performance exceeds that of previous parameterizations developed for this purpose and also performs better than existing machine learning models. In order to provide user-friendly versions of the model for applications, we have developed a web site where the model can be run by interested scientists via a web-based interface without prior technical knowledge. We also provide Python code of the model. Additionally, all experimental input data are provided in form of the Bielefeld Molecular Organic Glasses (BIMOG) database. We believe that this model is a powerful tool for many applications in atmospheric aerosol science and material science.

摘要

了解大气气溶胶颗粒中分子化合物的玻璃化转变温度对于估算其粘度很重要,因为它直接影响化学反应动力学和颗粒相态。虽然气溶胶颗粒中存在多种有机化合物,但只有一小部分的实验玻璃化转变温度是已知的。因此,我们开发了一种机器学习模型,旨在根据分子衍生的输入变量预测有机分子化合物的玻璃化转变温度。为此选择了该程序。采用了两种使用不同输入变量集的方法。第一种方法使用化合物中存在的选定官能团的数量,而第二种方法从SMILES(简化分子输入线性输入系统)字符串生成描述符。包括含有碳、氢、氧、氮和卤素原子的有机化合物。为了获得更好的结果,两种方法都可以与化合物的熔点作为附加输入变量相结合。结果表明,两种方法的预测结果显示出相似的平均绝对误差,约为12-13K,基于SMILES的预测表现略好。总体而言,考虑到实验输入数据的多样性,该模型显示出良好的预测能力。此外,我们还表明,其性能超过了为此目的开发的先前参数化方法,并且也比现有的机器学习模型表现更好。为了提供该模型的用户友好版本以供应用,我们开发了一个网站,感兴趣的科学家可以通过基于网络的界面运行该模型,而无需事先具备技术知识。我们还提供了该模型的Python代码。此外,所有实验输入数据都以比勒费尔德分子有机玻璃(BIMOG)数据库的形式提供。我们相信,该模型是大气气溶胶科学和材料科学中许多应用的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1890/10077449/8674fde81d40/ao2c08146_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验