Suppr超能文献

儿童数学学习困难者在数字运算中表现出微弱的行为和神经分化的线性和非线性特征。

Linear and nonlinear profiles of weak behavioral and neural differentiation between numerical operations in children with math learning difficulties.

机构信息

Department of Psychiatry & Behavioral Sciences, USA

Department of Psychology, USA

出版信息

Neuropsychologia. 2021 Sep 17;160:107977. doi: 10.1016/j.neuropsychologia.2021.107977. Epub 2021 Jul 28.

Abstract

Mathematical knowledge is constructed hierarchically during development from a basic understanding of addition and subtraction, two foundational and inter-related, but semantically distinct, numerical operations. Early in development, children show remarkable variability in their numerical problem-solving skills and difficulties in solving even simple addition and subtraction problems are a hallmark of math learning difficulties. Here, we use novel quantitative analyses to investigate whether less distinct representations are associated with poor problem-solving abilities in children during the early stages of math-skill acquisition. Crucially, we leverage dimensional and categorical analyses to identify linear and nonlinear neurobehavioral profiles of individual differences in math skills. Behaviorally, performance on the two different numerical operations was less differentiated in children with low math abilities, and lower problem-solving efficiency stemmed from weak evidence-accumulation during problem-solving. Children with low numerical abilities also showed less differentiated neural representations between addition and subtraction operations in multiple cortical areas, including the fusiform gyrus, intraparietal sulcus, anterior temporal cortex and insula. Furthermore, analysis of multi-regional neural representation patterns revealed significantly higher network similarity and aberrant integration of representations within a fusiform gyrus-intraparietal sulcus pathway important for manipulation of numerical quantity. These findings identify the lack of distinct neural representations as a novel neurobiological feature of individual differences in children's numerical problem-solving abilities, and an early developmental biomarker of low math skills. More generally, our approach combining dimensional and categorical analyses overcomes pitfalls associated with the use of arbitrary cutoffs for probing neurobehavioral profiles of individual differences in math abilities.

摘要

数学知识是在发展过程中从对加法和减法的基本理解中构建的,这两种运算都是基础且相互关联的,但语义上是不同的。在早期发展中,儿童在解决数字问题的技能上表现出显著的可变性,甚至解决简单的加法和减法问题的困难也是数学学习困难的标志。在这里,我们使用新颖的定量分析来研究在数学技能习得的早期阶段,是否不那么明显的表示与儿童解决问题能力较差有关。至关重要的是,我们利用维度和分类分析来识别数学技能个体差异的线性和非线性神经行为特征。从行为上看,数学能力较低的儿童在两种不同的数值运算上的表现差异较小,解决问题的效率较低是由于在解决问题过程中证据积累较弱。在多个皮质区域,包括梭状回、顶内沟、前颞叶皮质和脑岛,儿童的低数值能力也表现出加、减法运算之间神经表示的差异较小。此外,对多区域神经表示模式的分析表明,在一个对数字数量进行操作的重要的梭状回-顶内沟通路中,网络相似性更高,代表的整合异常。这些发现确定了缺乏明显的神经表示是儿童数值问题解决能力个体差异的一种新的神经生物学特征,也是数学技能较低的早期发育生物标志物。更一般地说,我们的方法结合了维度和分类分析,克服了使用任意截点来探测数学能力个体差异的神经行为特征的陷阱。

相似文献

3
Development of common neural representations for distinct numerical problems.针对不同数值问题构建共同的神经表征。
Neuropsychologia. 2015 Aug;75:481-95. doi: 10.1016/j.neuropsychologia.2015.07.005. Epub 2015 Jul 6.
10

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验