Suppr超能文献

用于理解学习障碍机制的数字孪生:个性化深度神经网络揭示神经元过度兴奋的影响。

Digital twins for understanding mechanisms of learning disabilities: Personalized deep neural networks reveal impact of neuronal hyperexcitability.

作者信息

Strock Anthony, Mistry Percy K, Menon Vinod

机构信息

Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.

Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.

出版信息

bioRxiv. 2024 May 2:2024.04.29.591409. doi: 10.1101/2024.04.29.591409.

Abstract

Learning disabilities affect a significant proportion of children worldwide, with far-reaching consequences for their academic, professional, and personal lives. Here we develop digital twins - biologically plausible personalized Deep Neural Networks (pDNNs) - to investigate the neurophysiological mechanisms underlying learning disabilities in children. Our pDNN reproduces behavioral and neural activity patterns observed in affected children, including lower performance accuracy, slower learning rates, neural hyper-excitability, and reduced neural differentiation of numerical problems. Crucially, pDNN models reveal aberrancies in the geometry of manifold structure, providing a comprehensive view of how neural excitability influences both learning performance and the internal structure of neural representations. Our findings not only advance knowledge of the neurophysiological underpinnings of learning differences but also open avenues for targeted, personalized strategies designed to bridge cognitive gaps in affected children. This work reveals the power of digital twins integrating AI and neuroscience to uncover mechanisms underlying neurodevelopmental disorders.

摘要

学习障碍影响着全球相当一部分儿童,对他们的学业、职业和个人生活产生深远影响。在此,我们开发了数字孪生体——具有生物学合理性的个性化深度神经网络(pDNN)——以研究儿童学习障碍背后的神经生理机制。我们的pDNN再现了在受影响儿童中观察到的行为和神经活动模式,包括较低的表现准确性、较慢的学习速度、神经兴奋性过高以及数字问题的神经分化减少。至关重要的是,pDNN模型揭示了流形结构几何形状的异常,全面展示了神经兴奋性如何影响学习表现和神经表征的内部结构。我们的研究结果不仅推进了对学习差异神经生理基础的认识,还为旨在弥合受影响儿童认知差距的针对性、个性化策略开辟了道路。这项工作揭示了整合人工智能和神经科学的数字孪生体在揭示神经发育障碍潜在机制方面的力量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2944/11092492/2d9dd2eae3a2/nihpp-2024.04.29.591409v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验