Division of Cardiology, Asan Medical Center, Seoul, Republic of Korea.
Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
Comput Methods Programs Biomed. 2021 Sep;208:106281. doi: 10.1016/j.cmpb.2021.106281. Epub 2021 Jul 21.
Background and objectiveDetecting abnormal patterns within an electrocardiogram (ECG) is crucial for diagnosing cardiovascular diseases. We start from two unresolved problems in applying deep-learning-based ECG classification models to clinical practice: first, although multiple cardiac arrhythmia (CA) types may co-occur in real life, the majority of previous detection methods have focused on one-to-one relationships between ECG and CA type, and second, it has been difficult to explain how neural-network-based CA classifiers make decisions. We hypothesize that fine-tuning attention maps with regard to all possible combinations of ground-truth (GT) labels will improve both the detection and interpretability of co-occurring CAs. Methods To test our hypothesis, we propose an end-to-end convolutional neural network (CNN), xECGNet, that fine-tunes the attention map to resemble the averaged response maps of GT labels. Fine-tuning is achieved by adding to the objective function a regularization loss between the attention map and the reference (averaged) map. Performance is assessed by F1 score and subset accuracy. Results The main experiment demonstrates that fine-tuning alone significantly improves a model's multilabel subset accuracy from 75.8% to 84.5% when compared with the baseline model. Also, xECGNet shows the highest F1 score of 0.812 and yields a more explainable map that encompasses multiple CA types, when compared to other baseline methods. Conclusions xECGNet has implications in that it tackles the two obstacles for the clinical application of CNN-based CA detection models with a simple solution of adding one additional term to the objective function.
在心电图(ECG)中检测异常模式对于诊断心血管疾病至关重要。我们从将基于深度学习的 ECG 分类模型应用于临床实践中存在的两个未解决的问题入手:首先,尽管在现实生活中可能同时存在多种心律失常(CA)类型,但大多数先前的检测方法都集中在 ECG 与 CA 类型之间的一对一关系上;其次,很难解释基于神经网络的 CA 分类器如何做出决策。我们假设,通过关注所有真实标签(GT)组合的注意力图进行微调,将提高同时发生的 CA 的检测和可解释性。
为了验证我们的假设,我们提出了一个端到端卷积神经网络(CNN),即 xECGNet,它通过在目标函数中添加注意力图与参考(平均)图之间的正则化损失来微调注意力图,以使其类似于 GT 标签的平均响应图。通过与基线模型相比,仅通过微调,在多标签子集中的模型准确性就从 75.8%显著提高到 84.5%,这是主要实验的结果。此外,与其他基线方法相比,xECGNet 还具有最高的 F1 得分为 0.812,并产生了一个更具可解释性的图谱,涵盖了多种 CA 类型。
xECGNet 的意义在于,它通过在目标函数中添加一个额外项来解决基于 CNN 的 CA 检测模型在临床应用中的两个障碍,这是一个简单的解决方案。