Suppr超能文献

基于 CNN 的 ECG 分类器的多阶段剪枝用于边缘设备。

Multistage Pruning of CNN Based ECG Classifiers for Edge Devices.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1965-1968. doi: 10.1109/EMBC46164.2021.9630588.

Abstract

Using smart wearable devices to monitor patients' electrocardiogram (ECG) for real-time detection of arrhythmias can significantly improve healthcare outcomes. Convolutional neural network (CNN) based deep learning has been used successfully to detect anomalous beats in ECG. However, the computational complexity of existing CNN models prohibits them from being implemented in low-powered edge devices. Usually, such models are complex with lots of model parameters which results in large number of computations, memory, and power usage in edge devices. Network pruning techniques can reduce model complexity at the expense of performance in CNN models. This paper presents a novel multistage pruning technique that reduces CNN model complexity with negligible loss in performance compared to existing pruning techniques. An existing CNN model for ECG classification is used as a baseline reference. At 60% sparsity, the proposed technique achieves 97.7% accuracy and an F1 score of 93.59% for ECG classification tasks. This is an improvement of 3.3% and 9% for accuracy and F1 Score respectively, compared to traditional pruning with fine-tuning approach. Compared to the baseline model, we also achieve a 60.4% decrease in run-time complexity.

摘要

利用智能可穿戴设备实时监测患者的心电图(ECG)以检测心律失常,可以显著改善医疗保健效果。基于卷积神经网络(CNN)的深度学习已成功用于检测 ECG 中的异常搏动。然而,现有 CNN 模型的计算复杂性使得它们无法在低功耗边缘设备中实现。通常,这些模型非常复杂,具有大量的模型参数,这导致在边缘设备中进行大量计算、占用大量内存和功耗。网络剪枝技术可以在牺牲 CNN 模型性能的前提下降低模型的复杂度。本文提出了一种新颖的多阶段剪枝技术,与现有的剪枝技术相比,在性能上几乎没有损失,却降低了 CNN 模型的复杂度。使用现有的 ECG 分类 CNN 模型作为基准参考。在 60%的稀疏度下,该技术在 ECG 分类任务中实现了 97.7%的准确率和 93.59%的 F1 分数。与传统的微调剪枝方法相比,在准确率和 F1 得分方面分别提高了 3.3%和 9%。与基准模型相比,我们还实现了运行时复杂度降低 60.4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验