Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy; Institute of Pathology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland.
Biomaterials. 2021 Sep;276:120975. doi: 10.1016/j.biomaterials.2021.120975. Epub 2021 Jul 20.
Understanding the molecular mechanisms of metastatic dissemination, the leading cause of death in cancer patients, is required to develop novel, effective therapies. Extravasation, an essential rate-limiting process in the metastatic cascade, includes three tightly coordinated steps: cancer cell adhesion to the endothelium, trans-endothelial migration, and early invasion into the secondary site. Focal adhesion proteins, including Tln1 and FAK, regulate the cytoskeleton dynamics: dysregulation of these proteins is often associated with metastatic progression and poor prognosis.
Here, we studied the previously unexplored role of these targets in each extravasation step using engineered 3D in vitro models, which recapitulate the physiological vascular niche experienced by cancer cells during hematogenous metastasis.
Human breast cancer and fibrosarcoma cell lines respond to Cdk5/Tln1/FAK axis perturbation, impairing their metastatic potential. Vascular breaching requires actin polymerization-dependent invadopodia formation. Invadopodia generation requires the structural function of FAK and Tln1 rather than their activation through phosphorylation. Our data support that the inhibition of FAKS732 phosphorylation delocalizes ERK from the nucleus, decreasing ERK phosphorylated form. These findings indicate the critical role of these proteins in driving trans-endothelial migration. In fact, both knock-down experiments and chemical inhibition of FAK dramatically reduces lung colonization in vivo and TEM in microfluidic setting. Altogether, these data indicate that engineered 3D in vitro models coupled to in vivo models, genetic, biochemical, and imaging tools represent a powerful weapon to increase our understanding of metastatic progression.
These findings point to the need for further analyses of previously overlooked phosphorylation sites of FAK, such as the serine 732, and foster the development of new effective antimetastatic treatments targeting late events of the metastatic cascade.
了解转移性扩散的分子机制是开发新型有效治疗方法的必要条件,转移性扩散是癌症患者死亡的主要原因。渗出是转移级联中的一个关键限速过程,包括三个紧密协调的步骤:癌细胞与内皮细胞的黏附、跨内皮迁移和早期侵袭到次级部位。焦点粘附蛋白,包括 Tln1 和 FAK,调节细胞骨架动力学:这些蛋白质的失调通常与转移进展和预后不良有关。
在这里,我们使用工程化的 3D 体外模型研究了这些靶标在每个渗出步骤中的以前未被探索的作用,该模型再现了癌症细胞在血源性转移过程中经历的生理血管小生境。
人乳腺癌和纤维肉瘤细胞系对 Cdk5/Tln1/FAK 轴的扰动做出反应,削弱了它们的转移潜力。血管破裂需要肌动蛋白聚合依赖性侵袭小体的形成。侵袭小体的生成需要 FAK 和 Tln1 的结构功能,而不是通过磷酸化激活它们。我们的数据支持抑制 FAKS732 磷酸化将 ERK 从核内易位,减少 ERK 磷酸化形式。这些发现表明这些蛋白质在驱动跨内皮迁移中起着关键作用。事实上,敲低实验和化学抑制 FAK 都显著减少了体内肺定植和微流控设置中的 TEM。总之,这些数据表明,工程化的 3D 体外模型与体内模型、遗传、生化和成像工具相结合,代表了增加我们对转移进展理解的有力武器。
这些发现表明需要进一步分析 FAK 以前被忽视的磷酸化位点,如丝氨酸 732,并促进针对转移级联晚期事件的新的有效抗转移治疗方法的开发。