Suppr超能文献

微流控技术在血管生物学研究中的应用:工程师、生物学家和临床医生的批判性综述。

Microfluidics in vascular biology research: a critical review for engineers, biologists, and clinicians.

机构信息

Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.

Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.

出版信息

Lab Chip. 2022 Sep 27;22(19):3618-3636. doi: 10.1039/d2lc00352j.

Abstract

Neovascularization, the formation of new blood vessels, has received much research attention due to its implications for physiological processes and diseases. Most studies using traditional and platforms find challenges in recapitulating key cellular and mechanical cues of the neovascularization processes. Microfluidic models have been presented as an alternative to these limitations due to their capacity to leverage microscale physics to control cell organization and integrate biochemical and mechanical cues, such as shear stress, cell-cell interactions, or nutrient gradients, making them an ideal option for recapitulating organ physiology. Much has been written about the use of microfluidics in vascular biology models from an engineering perspective. However, a review introducing the different models, components and progress for new potential adopters of these technologies was absent in the literature. Therefore, this paper aims to approach the use of microfluidic technologies in vascular biology from a perspective of biological hallmarks to be studied and written for a wide audience ranging from clinicians to engineers. Here we review applications of microfluidics in vascular biology research, starting with design considerations and fabrication techniques. After that, we review the state of the art in recapitulating angiogenesis and vasculogenesis, according to the hallmarks recapitulated and complexity of the models. Finally, we discuss emerging research areas in neovascularization, such as drug discovery, and potential future directions.

摘要

血管新生,即新血管的形成,因其对生理过程和疾病的影响而受到广泛关注。大多数使用传统和平台的研究在重现血管新生过程中的关键细胞和力学线索方面都面临挑战。由于微流控模型能够利用微尺度物理来控制细胞组织,并整合生化和力学线索,如切应力、细胞-细胞相互作用或营养梯度,因此它们成为重现器官生理学的理想选择,因此已经被提出作为这些限制的替代方案。从工程学的角度来看,已经有很多关于微流控在血管生物学模型中应用的文章。然而,在文献中,对于这些技术的新潜在采用者,缺少关于不同模型、组件和进展的介绍性综述。因此,本文旨在从生物学特征的角度来探讨微流控技术在血管生物学中的应用,并为从临床医生到工程师的广大读者撰写。在这里,我们回顾了微流控技术在血管生物学研究中的应用,首先介绍了设计考虑因素和制造技术。之后,根据所重现的特征和模型的复杂性,我们综述了再现将血管生成和血管发生的最新进展。最后,我们讨论了血管新生领域的新兴研究领域,如药物发现,以及潜在的未来方向。

相似文献

2
Advances in microfluidic cell culture systems for studying angiogenesis.
J Lab Autom. 2013 Dec;18(6):427-36. doi: 10.1177/2211068213495206. Epub 2013 Jul 5.
3
Microfluidics-based in vivo mimetic systems for the study of cellular biology.
Acc Chem Res. 2014 Apr 15;47(4):1165-73. doi: 10.1021/ar4002608. Epub 2014 Feb 20.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Recreating Physiological Environments In Vitro: Design Rules for Microfluidic-Based Vascularized Tissue Constructs.
Small. 2020 Mar;16(9):e1905055. doi: 10.1002/smll.201905055. Epub 2020 Jan 8.
6
The present and future role of microfluidics in biomedical research.
Nature. 2014 Mar 13;507(7491):181-9. doi: 10.1038/nature13118.
7
Microfluidic models of vascular functions.
Annu Rev Biomed Eng. 2012;14:205-30. doi: 10.1146/annurev-bioeng-071811-150052. Epub 2012 Apr 23.
8
Fundamentals of microfluidic cell culture in controlled microenvironments.
Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1.
9
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.
10
Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies.
Lab Chip. 2024 Mar 26;24(7):1867-1874. doi: 10.1039/d3lc00796k.

引用本文的文献

2
Applications of microfluidic chip technology in microvascular thrombosis research.
Mikrochim Acta. 2025 May 24;192(6):371. doi: 10.1007/s00604-025-07239-1.
3
4
Antagonizing the S1P-S1P3 Axis as a Promising Anti-Angiogenic Strategy.
Metabolites. 2025 Mar 5;15(3):178. doi: 10.3390/metabo15030178.
5
Recombinant-Chemosynthetic Biosensors for Probing Cell Surface Signaling of Red Blood Cells and Other Cells.
Chem Biomed Imaging. 2025 Jan 3;3(2):95-110. doi: 10.1021/cbmi.4c00067. eCollection 2025 Feb 24.
6
Laser Aggregometry Assessment of Blood Microrheology in a Slit Fluidic Channel Covered With Endothelial Cells.
J Biophotonics. 2024 Dec;17(12):e202400379. doi: 10.1002/jbio.202400379. Epub 2024 Oct 10.
8
The significance of growth shells in development of symmetry, transparency, and refraction of the human lens.
Front Ophthalmol (Lausanne). 2024 Jul 19;4:1434327. doi: 10.3389/fopht.2024.1434327. eCollection 2024.
9
3D Printed Hydrogel Sensor for Rapid Colorimetric Detection of Salivary pH.
Sensors (Basel). 2024 Jun 8;24(12):3740. doi: 10.3390/s24123740.
10
The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models.
ACS Biomater Sci Eng. 2024 Jun 10;10(6):3548-3567. doi: 10.1021/acsbiomaterials.3c01978. Epub 2024 May 7.

本文引用的文献

1
A role for microfluidic systems in precision medicine.
Nat Commun. 2022 Jun 2;13(1):3086. doi: 10.1038/s41467-022-30384-7.
2
Microphysiological model of renal cell carcinoma to inform anti-angiogenic therapy.
Biomaterials. 2022 Apr;283:121454. doi: 10.1016/j.biomaterials.2022.121454. Epub 2022 Mar 11.
3
Primary head and neck tumour-derived fibroblasts promote lymphangiogenesis in a lymphatic organotypic co-culture model.
EBioMedicine. 2021 Nov;73:103634. doi: 10.1016/j.ebiom.2021.103634. Epub 2021 Oct 18.
4
Microfluidics in cardiovascular disease research: state of the art and future outlook.
Microsyst Nanoeng. 2021 Mar 3;7:19. doi: 10.1038/s41378-021-00245-2. eCollection 2021.
6
The driving role of the Cdk5/Tln1/FAK axis in cancer cell extravasation dissected by human vascularized microfluidic models.
Biomaterials. 2021 Sep;276:120975. doi: 10.1016/j.biomaterials.2021.120975. Epub 2021 Jul 20.
7
3D Bioprinting of Vascularized Tissues for and Applications.
Front Bioeng Biotechnol. 2021 May 13;9:664188. doi: 10.3389/fbioe.2021.664188. eCollection 2021.
8
Bioengineered microfluidic blood-brain barrier models in oncology research.
Transl Oncol. 2021 Jul;14(7):101087. doi: 10.1016/j.tranon.2021.101087. Epub 2021 Apr 14.
9
Endothelial Regulation of Drug Transport in a 3D Vascularized Tumor Model.
Adv Funct Mater. 2020 Nov 25;30(48). doi: 10.1002/adfm.202002444. Epub 2020 Jun 9.
10
Toward improved models of human cancer.
APL Bioeng. 2021 Jan 21;5(1):010902. doi: 10.1063/5.0026857. eCollection 2021 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验