Suppr超能文献

高通量测序揭示番茄与病原体的相互作用以实现可持续植物育种。

High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding.

作者信息

Campos Maria Doroteia, Félix Maria do Rosário, Patanita Mariana, Materatski Patrick, Varanda Carla

机构信息

MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.

MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.

出版信息

Hortic Res. 2021 Aug 1;8(1):171. doi: 10.1038/s41438-021-00607-x.

Abstract

Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.

摘要

番茄(Solanum lycopersicum)是全球经济价值最重要的蔬菜之一。它是研究最深入的栽培双子叶植物之一,常被用作植物经典遗传学、细胞遗传学、分子遗传学和分子生物学研究的模式系统。番茄植株会受到多种病原体的影响,如病毒、类病毒、真菌、卵菌、细菌和线虫,这些病原体会降低产量并影响产品质量。将番茄作为植物 - 病原体系统进行研究,有助于加快对抗病性潜在分子机制的发现和理解,并为提高其可食用产品的产量和质量提供机会。功能基因组学的应用通过传统技术和最近开发的技术推动了这一目标的实现,这些技术能够识别植物在感病和抗病反应中的关键功能基因,并理解病原体攻击期间亲和性互作的分子基础。新一代测序技术(NGS)能产生大量测序数据,极大地加速了生物科学研究,并为更好地理解植物 - 病原体相互作用的分子网络提供了巨大机遇。在本综述中我们总结了重要研究,这些研究利用高通量RNA测序技术获得了番茄植株在应对病毒、真菌、细菌、卵菌和线虫等多种病原体时的转录组变化。这些发现将促进基因工程努力,以便在番茄中引入新的抗性来源以抵御病原体,并且对于可持续植物病害管理(即鉴于植物育种依靠植物先天免疫机制的管理)至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8325677/7816e248d3a4/41438_2021_607_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验