Suppr超能文献

急性缺血性脑卒中发病后 3 个月内发生主要卒中后抑郁的预测列线图的开发和验证。

Development and Validation of 3-Month Major Post-Stroke Depression Prediction Nomogram After Acute Ischemic Stroke Onset.

机构信息

Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

Department of Neurology, Wuhan Central Hospital, Wuhan, Hubei, 430014, People's Republic of China.

出版信息

Clin Interv Aging. 2021 Jul 24;16:1439-1447. doi: 10.2147/CIA.S318857. eCollection 2021.

Abstract

PURPOSE

The early detection of major post-stroke depression (PSD) is essential to optimize patient care. A major PSD prediction tool needs to be developed and validated for early screening of major PSD patients.

PATIENTS AND METHODS

A total of 639 acute ischemic stroke (AIS) patients from three hospitals were consecutively recruited and completed a 3-month follow-up. Sociodemographic, clinical and laboratory test data were collected on admission. With major depression criteria being met in the DSM-V, 17-item Hamilton Rating Scale For Depression (HRSD) score ≥17 at 3 months after stroke onset was regarded as the primary endpoint. Multiple imputation was used to substitute the missing values and multivariable logistic regression model was fitted to determine associated factors with a bootstrap backward selection process. The nomogram was constructed based on the regression coefficients of the associated factors. Performance of the nomogram was assessed by discrimination (C-statistics) and calibration curve.

RESULTS

A total of 7.04% (45/639) of patients were diagnosed with major PSD at 3 months. The final logistic regression model included age, baseline NIHSS and mRS scores, educational level, calcium-phosphorus product, history of hypertension and atrial fibrillation. The model had acceptable discrimination, based on a C-statistic of 0.81 (95% CI, 0.791-0.829), with 71.1% sensitivity and 78.6% specificity. We also transformed the model to a nomogram, an easy-to-use clinical tool which could be used to facilitate the early screening of major PSD patients at 3 months.

CONCLUSION

We identified several associated factors of major PSD at 3 months and constructed a convenient nomogram to guide follow-up and aid accurate prognostic assessment.

摘要

目的

早期发现重大卒中后抑郁(PSD)对于优化患者护理至关重要。需要开发和验证一种主要 PSD 预测工具,以便对主要 PSD 患者进行早期筛查。

患者和方法

连续招募了来自三家医院的 639 名急性缺血性脑卒中(AIS)患者,并完成了 3 个月的随访。入院时收集了社会人口统计学、临床和实验室检查数据。根据 DSM-V 中的重度抑郁标准,将卒中发病后 3 个月时 17 项汉密尔顿抑郁量表(HRSD)评分≥17 定义为主要终点。使用多重插补法替代缺失值,并使用多变量逻辑回归模型拟合确定与主要 PSD 相关的因素,并使用 bootstrap 后向选择过程进行筛选。根据相关因素的回归系数构建列线图。通过判别(C 统计量)和校准曲线评估列线图的性能。

结果

共有 7.04%(45/639)的患者在 3 个月时被诊断为重大 PSD。最终的逻辑回归模型包括年龄、基线 NIHSS 和 mRS 评分、教育程度、钙磷乘积、高血压和心房颤动病史。该模型具有可接受的判别能力,C 统计量为 0.81(95%CI,0.791-0.829),灵敏度为 71.1%,特异度为 78.6%。我们还将模型转化为一个易于使用的临床工具——列线图,以帮助在 3 个月时对重大 PSD 患者进行早期筛查。

结论

我们确定了 3 个月时重大 PSD 的几个相关因素,并构建了一个方便的列线图,以指导随访并帮助进行准确的预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/8318664/2b7afb357850/CIA-16-1439-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验