Suppr超能文献

确保:用于无监督学习的集成斯坦无偏风险估计器。

ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.

作者信息

Aggarwal Hemant Kumar, Pramanik Aniket, Jacob Mathews

机构信息

University of Iowa, Iowa, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414513.

Abstract

Deep learning algorithms are emerging as powerful alternatives to compressed sensing methods, offering improved image quality and computational efficiency. Unfortunately, fully sampled training images may not be available or are difficult to acquire in several applications, including high-resolution and dynamic imaging. Previous studies in image reconstruction have utilized Stein's Unbiased Risk Estimator (SURE) as a mean square error (MSE) estimate for the image denoising step in an unrolled network. Unfortunately, the end-to-end training of a network using SURE remains challenging since the projected SURE loss is a poor approximation to the MSE, especially in the heavily undersampled setting. We propose an ENsemble SURE (ENSURE) approach to train a deep network only from undersampled measurements. In particular, we show that training a network using an ensemble of images, each acquired with a different sampling pattern, can closely approximate the MSE. Our preliminary experimental results show that the proposed ENSURE approach gives comparable reconstruction quality to supervised learning and a recent unsupervised learning method.

摘要

深度学习算法正在成为压缩感知方法的有力替代方案,可提供更高的图像质量和计算效率。不幸的是,在包括高分辨率和动态成像在内的一些应用中,可能无法获得完全采样的训练图像,或者难以获取。图像重建方面的先前研究已将斯坦无偏风险估计器(SURE)用作展开网络中图像去噪步骤的均方误差(MSE)估计。不幸的是,使用SURE对网络进行端到端训练仍然具有挑战性,因为投影的SURE损失与MSE的近似效果较差,尤其是在严重欠采样的情况下。我们提出了一种集成SURE(ENSURE)方法,仅从欠采样测量中训练深度网络。特别是,我们表明使用一组图像(每个图像以不同的采样模式获取)训练网络可以紧密逼近MSE。我们的初步实验结果表明,所提出的ENSURE方法可提供与监督学习和最近的无监督学习方法相当的重建质量。

相似文献

1
ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414513.
2
ENSURE: A General Approach for Unsupervised Training of Deep Image Reconstruction Algorithms.
IEEE Trans Med Imaging. 2023 Apr;42(4):1133-1144. doi: 10.1109/TMI.2022.3224359. Epub 2023 Apr 3.
3
Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.
Magn Reson Med. 2014 May;71(5):1760-70. doi: 10.1002/mrm.24840. Epub 2013 Jul 2.
5
Deep Network Regularization for Phase-Based Magnetic Resonance Electrical Properties Tomography With Stein's Unbiased Risk Estimator.
IEEE Trans Biomed Eng. 2025 Jan;72(1):43-55. doi: 10.1109/TBME.2024.3438270. Epub 2025 Jan 15.
6
Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator.
IEEE Trans Image Process. 2019 Oct;28(10):4899-4911. doi: 10.1109/TIP.2019.2912292. Epub 2019 Apr 26.
7
Uncertainty Quantification in Deep MRI Reconstruction.
IEEE Trans Med Imaging. 2021 Jan;40(1):239-250. doi: 10.1109/TMI.2020.3025065. Epub 2020 Dec 29.
8
Automatic breast tissue segmentation in MRIs with morphology snake and deep denoiser training via extended Stein's unbiased risk estimator.
Health Inf Sci Syst. 2021 Apr 5;9(1):16. doi: 10.1007/s13755-021-00143-x. eCollection 2021 Dec.
9
Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration.
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7331-7344. doi: 10.1109/TNNLS.2024.3386809. Epub 2025 Apr 4.
10
Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
Magn Reson Med. 2020 Dec;84(6):3172-3191. doi: 10.1002/mrm.28378. Epub 2020 Jul 2.

引用本文的文献

1
Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.
Bioengineering (Basel). 2024 Dec 23;11(12):1305. doi: 10.3390/bioengineering11121305.
2
Self-Supervised Deep Unrolled Reconstruction Using Regularization by Denoising.
IEEE Trans Med Imaging. 2024 Mar;43(3):1203-1213. doi: 10.1109/TMI.2023.3332614. Epub 2024 Mar 5.
4
5
MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.

本文引用的文献

1
Unpaired Training of Deep Learning tMRA for Flexible Spatio-Temporal Resolution.
IEEE Trans Med Imaging. 2021 Jan;40(1):166-179. doi: 10.1109/TMI.2020.3023620. Epub 2020 Dec 29.
2
Deep Generalization of Structured Low-Rank Algorithms (Deep-SLR).
IEEE Trans Med Imaging. 2020 Dec;39(12):4186-4197. doi: 10.1109/TMI.2020.3014581. Epub 2020 Nov 30.
3
Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
Magn Reson Med. 2020 Dec;84(6):3172-3191. doi: 10.1002/mrm.28378. Epub 2020 Jul 2.
4
k -Space Deep Learning for Accelerated MRI.
IEEE Trans Med Imaging. 2020 Feb;39(2):377-386. doi: 10.1109/TMI.2019.2927101. Epub 2019 Jul 5.
5
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
6
Learned Primal-Dual Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.
7
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321. doi: 10.1109/TMI.2017.2785879.
8
Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8.
9
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction.
IEEE Trans Med Imaging. 2018 Feb;37(2):491-503. doi: 10.1109/TMI.2017.2760978. Epub 2017 Oct 13.
10
Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms.
IEEE Trans Image Process. 2008 Sep;17(9):1540-54. doi: 10.1109/TIP.2008.2001404.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验