Weller Daniel S, Ramani Sathish, Nielsen Jon-Fredrik, Fessler Jeffrey A
Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan, USA.
Magn Reson Med. 2014 May;71(5):1760-70. doi: 10.1002/mrm.24840. Epub 2013 Jul 2.
Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques.
We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted Stein's unbiased risk estimate. We describe a Monte Carlo approximation of the weighted Stein's unbiased risk estimate that uses two evaluations of the reconstruction method per candidate parameter value.
We reconstruct images using the denoising sparse images from GRAPPA using the nullspace method (DESIGN) and L1 iterative self-consistent parallel imaging (L1 -SPIRiT). We validate Monte Carlo Stein's unbiased risk estimate against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters.
Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1 -SPIRiT over a range of noise levels and undersampling factors.
The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods.
正则化并行磁共振成像(MRI)重建可显著提高图像质量,但需要调整参数选择。我们提出一种基于斯坦无偏风险估计的蒙特卡罗方法来自动选择参数,该方法可使多通道k空间均方误差(MSE)最小化。我们为保留欠采样采集数据的图像重建方法自动调整参数,而这是现有技术无法实现的。
我们推导了适用于保留数据的正则化并行成像重建的加权MSE准则以及相应的加权斯坦无偏风险估计。我们描述了加权斯坦无偏风险估计的蒙特卡罗近似方法,该方法对每个候选参数值使用重建方法的两次评估。
我们使用零空间法(DESIGN)和L1迭代自洽并行成像(L1-SPIRiT)从GRAPPA重建去噪稀疏图像。我们针对加权MSE验证蒙特卡罗斯坦无偏风险估计。我们使用这些方法为各种噪声水平和欠采样因子选择正则化参数,并将结果与使用MSE最优参数的结果进行比较。
我们的方法在一系列噪声水平和欠采样因子下,为DESIGN和L1-SPIRiT都选择了接近MSE最优的正则化参数。
所提出的方法自动为保留数据的非线性并行MRI重建方法提供接近MSE最优的正则化参数选择。