Suppr超能文献

基于蒙特卡洛SURE的并行磁共振成像重建参数选择

Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.

作者信息

Weller Daniel S, Ramani Sathish, Nielsen Jon-Fredrik, Fessler Jeffrey A

机构信息

Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Magn Reson Med. 2014 May;71(5):1760-70. doi: 10.1002/mrm.24840. Epub 2013 Jul 2.

Abstract

PURPOSE

Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques.

THEORY

We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted Stein's unbiased risk estimate. We describe a Monte Carlo approximation of the weighted Stein's unbiased risk estimate that uses two evaluations of the reconstruction method per candidate parameter value.

METHODS

We reconstruct images using the denoising sparse images from GRAPPA using the nullspace method (DESIGN) and L1 iterative self-consistent parallel imaging (L1 -SPIRiT). We validate Monte Carlo Stein's unbiased risk estimate against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters.

RESULTS

Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1 -SPIRiT over a range of noise levels and undersampling factors.

CONCLUSION

The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods.

摘要

目的

正则化并行磁共振成像(MRI)重建可显著提高图像质量,但需要调整参数选择。我们提出一种基于斯坦无偏风险估计的蒙特卡罗方法来自动选择参数,该方法可使多通道k空间均方误差(MSE)最小化。我们为保留欠采样采集数据的图像重建方法自动调整参数,而这是现有技术无法实现的。

理论

我们推导了适用于保留数据的正则化并行成像重建的加权MSE准则以及相应的加权斯坦无偏风险估计。我们描述了加权斯坦无偏风险估计的蒙特卡罗近似方法,该方法对每个候选参数值使用重建方法的两次评估。

方法

我们使用零空间法(DESIGN)和L1迭代自洽并行成像(L1-SPIRiT)从GRAPPA重建去噪稀疏图像。我们针对加权MSE验证蒙特卡罗斯坦无偏风险估计。我们使用这些方法为各种噪声水平和欠采样因子选择正则化参数,并将结果与使用MSE最优参数的结果进行比较。

结果

我们的方法在一系列噪声水平和欠采样因子下,为DESIGN和L1-SPIRiT都选择了接近MSE最优的正则化参数。

结论

所提出的方法自动为保留数据的非线性并行MRI重建方法提供接近MSE最优的正则化参数选择。

相似文献

1
Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.
Magn Reson Med. 2014 May;71(5):1760-70. doi: 10.1002/mrm.24840. Epub 2013 Jul 2.
2
Non-cartesian MRI reconstruction with automatic regularization Via Monte-Carlo SURE.
IEEE Trans Med Imaging. 2013 Aug;32(8):1411-22. doi: 10.1109/TMI.2013.2257829. Epub 2013 Apr 12.
3
Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods.
IEEE Trans Image Process. 2012 Aug;21(8):3659-72. doi: 10.1109/TIP.2012.2195015. Epub 2012 Apr 17.
4
Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms.
IEEE Trans Image Process. 2008 Sep;17(9):1540-54. doi: 10.1109/TIP.2008.2001404.
5
Denoising sparse images from GRAPPA using the nullspace method.
Magn Reson Med. 2012 Oct;68(4):1176-89. doi: 10.1002/mrm.24116. Epub 2011 Dec 28.
6
Automated Parameter Selection for Accelerated MRI Reconstruction via Low-Rank Modeling of Local k-Space Neighborhoods.
Z Med Phys. 2023 May;33(2):203-219. doi: 10.1016/j.zemedi.2022.02.002. Epub 2022 Feb 22.
7
Denoising PET images using singular value thresholding and Stein's unbiased risk estimate.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):115-22. doi: 10.1007/978-3-642-40760-4_15.
8
ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414513.
9
Improved parallel MR imaging using a coefficient penalized regularization for GRAPPA reconstruction.
Magn Reson Med. 2013 Apr;69(4):1109-14. doi: 10.1002/mrm.24344. Epub 2012 May 24.
10
Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.
Magn Reson Med. 2014 Feb;71(2):645-60. doi: 10.1002/mrm.24716.

引用本文的文献

1
Compressed sensing acceleration of radial 3-D alternating Look-Locker mapping.
Magn Reson Med. 2025 Nov;94(5):2258-2267. doi: 10.1002/mrm.30610. Epub 2025 Jun 16.
3
Joint MAPLE: Accelerated joint T and mapping with scan-specific self-supervised networks.
Magn Reson Med. 2024 Jun;91(6):2294-2309. doi: 10.1002/mrm.29989. Epub 2024 Jan 5.
4
Automated Parameter Selection for Accelerated MRI Reconstruction via Low-Rank Modeling of Local k-Space Neighborhoods.
Z Med Phys. 2023 May;33(2):203-219. doi: 10.1016/j.zemedi.2022.02.002. Epub 2022 Feb 22.
5
Data-Driven Regularization Parameter Selection in Dynamic MRI.
J Imaging. 2021 Feb 20;7(2):38. doi: 10.3390/jimaging7020038.
6
Comparison of parameter optimization methods for quantitative susceptibility mapping.
Magn Reson Med. 2021 Jan;85(1):480-494. doi: 10.1002/mrm.28435. Epub 2020 Aug 1.
7
Banding-free balanced SSFP cardiac cine using frequency modulation and phase cycle redundancy.
Magn Reson Med. 2019 Nov;82(5):1604-1616. doi: 10.1002/mrm.27815. Epub 2019 Jun 22.
8
Sparsity adaptive reconstruction for highly accelerated cardiac MRI.
Magn Reson Med. 2019 Jun;81(6):3875-3887. doi: 10.1002/mrm.27671. Epub 2019 Jan 21.
9
Real-Time Filtering with Sparse Variations for Head Motion in Magnetic Resonance Imaging.
Signal Processing. 2019 Apr;157:170-179. doi: 10.1016/j.sigpro.2018.12.001. Epub 2018 Dec 3.
10

本文引用的文献

1
PRACTICAL PARALLEL IMAGING COMPRESSED SENSING MRI: SUMMARY OF TWO YEARS OF EXPERIENCE IN ACCELERATING BODY MRI OF PEDIATRIC PATIENTS.
Proc IEEE Int Symp Biomed Imaging. 2011 Dec 31;2011:1039-1043. doi: 10.1109/ISBI.2011.5872579.
2
Non-cartesian MRI reconstruction with automatic regularization Via Monte-Carlo SURE.
IEEE Trans Med Imaging. 2013 Aug;32(8):1411-22. doi: 10.1109/TMI.2013.2257829. Epub 2013 Apr 12.
3
Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods.
IEEE Trans Image Process. 2012 Aug;21(8):3659-72. doi: 10.1109/TIP.2012.2195015. Epub 2012 Apr 17.
4
Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.
IEEE Trans Med Imaging. 2012 Jun;31(6):1250-62. doi: 10.1109/TMI.2012.2188039. Epub 2012 Feb 15.
5
Denoising sparse images from GRAPPA using the nullspace method.
Magn Reson Med. 2012 Oct;68(4):1176-89. doi: 10.1002/mrm.24116. Epub 2011 Dec 28.
6
SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space.
Magn Reson Med. 2010 Aug;64(2):457-71. doi: 10.1002/mrm.22428.
7
Improved pediatric MR imaging with compressed sensing.
Radiology. 2010 Aug;256(2):607-16. doi: 10.1148/radiol.10091218. Epub 2010 Jun 7.
8
Accelerating SENSE using compressed sensing.
Magn Reson Med. 2009 Dec;62(6):1574-84. doi: 10.1002/mrm.22161.
9
Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms.
IEEE Trans Image Process. 2008 Sep;17(9):1540-54. doi: 10.1109/TIP.2008.2001404.
10
A statistical approach to SENSE regularization with arbitrary k-space trajectories.
Magn Reson Med. 2008 Aug;60(2):414-21. doi: 10.1002/mrm.21665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验