Duchemin Charlotte, Ramos Joao P, Stora Thierry, Ahmed Essraa, Aubert Elodie, Audouin Nadia, Barbero Ermanno, Barozier Vincent, Bernardes Ana-Paula, Bertreix Philippe, Boscher Aurore, Bruchertseifer Frank, Catherall Richard, Chevallay Eric, Christodoulou Pinelopi, Chrysalidis Katerina, Cocolios Thomas E, Comte Jeremie, Crepieux Bernard, Deschamps Matthieu, Dockx Kristof, Dorsival Alexandre, Fedosseev Valentin N, Fernier Pascal, Formento-Cavaier Robert, El Idrissi Safouane, Ivanov Peter, Gadelshin Vadim M, Gilardoni Simone, Grenard Jean-Louis, Haddad Ferid, Heinke Reinhard, Juif Benjamin, Khalid Umair, Khan Moazam, Köster Ulli, Lambert Laura, Lilli G, Lunghi Giacomo, Marsh Bruce A, Palenzuela Yisel Martinez, Martins Renata, Marzari Stefano, Menaa Nabil, Michel Nathalie, Munos Maxime, Pozzi Fabio, Riccardi Francesco, Riegert Julien, Riggaz Nicolas, Rinchet Jean-Yves, Rothe Sebastian, Russell Ben, Saury Christelle, Schneider Thomas, Stegemann Simon, Talip Zeynep, Theis Christian, Thiboud Julien, van der Meulen Nicholas P, van Stenis Miranda, Vincke Heinz, Vollaire Joachim, Vuong Nhat-Tan, Webster Benjamin, Wendt Klaus, Wilkins Shane G
Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland.
Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium.
Front Med (Lausanne). 2021 Jul 15;8:693682. doi: 10.3389/fmed.2021.693682. eCollection 2021.
The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to its Radiological Controlled Area and laboratory. Targets are being irradiated by the 1.4 GeV proton beam delivered by the CERN Proton Synchrotron Booster (PSB) on a station placed between the High Resolution Separator (HRS) ISOLDE target station and its beam dump. Irradiated target materials are also received from external institutes to undergo mass separation at CERN-MEDICIS. All targets are handled via a remote handling system and exploited on a dedicated isotope separator beamline. To allow for the release and collection of a specific radionuclide of medical interest, each target is heated to temperatures of up to 2,300°C. The created ions are extracted and accelerated to an energy up to 60 kV, and the beam steered through an off-line sector field magnet mass separator. This is followed by the extraction of the radionuclide of interest through mass separation and its subsequent implantation into a collection foil. In addition, the MELISSA (MEDICIS Laser Ion Source Setup At CERN) laser laboratory, in service since April 2019, helps to increase the separation efficiency and the selectivity. After collection, the implanted radionuclides are dispatched to the biomedical research centers, participating in the CERN-MEDICIS collaboration, for Research & Development in imaging or treatment. Since its commissioning, the CERN-MEDICIS facility has provided its partner institutes with non-conventional medical radionuclides such as Tb-149, Tb-152, Tb-155, Sm-153, Tm-165, Tm-167, Er-169, Yb-175, and Ac-225 with a high specific activity. This article provides a review of the achievements and milestones of CERN-MEDICIS since it has produced its first radioactive isotope in December 2017, with a special focus on its most recent operation in 2020.
欧洲核子研究组织的MEDICIS(从ISolde收集的医用同位素)设施于2017年12月在瑞士的欧洲核子研究组织交付了其第一束放射性离子束,以支持使用非常规放射性核素的核医学研究与开发。从那时起,包括欧洲核子研究组织在内的14个机构加入了该合作项目,以推动这一独特装置的科学计划,并评估该领域的需求,以改进成像、诊断、放射治疗和个性化医疗方面的研究。该设施是作为欧洲核子研究组织ISOLDE(在线同位素分离装置)设施的扩展而建造的。由于其放射控制区和实验室,使得处理开放放射性同位素源成为可能。靶材由欧洲核子研究组织质子同步加速器增强器(PSB)提供的1.4 GeV质子束在位于高分辨率分离器(HRS)ISOLDE靶站与其束流卸料器之间的一个站台上进行辐照。辐照过的靶材也从外部机构接收,以便在欧洲核子研究组织的MEDICIS进行质量分离。所有靶材均通过远程处理系统进行处理,并在专用的同位素分离束线上进行利用。为了释放和收集具有医学意义的特定放射性核素,每个靶材被加热到高达2300°C的温度。产生的离子被提取并加速到高达60 kV的能量,然后束流通过离线扇形场磁铁质量分离器。接下来,通过质量分离提取感兴趣的放射性核素,并将其随后注入到收集箔中。此外,自2019年4月投入使用的MELISSA(欧洲核子研究组织的MEDICIS激光离子源装置)激光实验室有助于提高分离效率和选择性。收集后,注入的放射性核素被发送到参与欧洲核子研究组织MEDICIS合作项目的生物医学研究中心,用于成像或治疗方面的研究与开发。自投入运行以来,欧洲核子研究组织的MEDICIS设施已为其合作伙伴机构提供了具有高比活度的非常规医用放射性核素,如Tb-149、Tb-152、Tb-155、Sm-153、Tm-165、Tm-167、Er-169、Yb-175和Ac-225。本文回顾了欧洲核子研究组织的MEDICIS自2017年12月产生其第一种放射性同位素以来所取得的成就和里程碑,特别关注其在2020年的最新运行情况。