Suppr超能文献

面向化学、生物化学和生物物理专业学生的分子建模课程中的机器学习

Machine Learning in a Molecular Modeling Course for Chemistry, Biochemistry, and Biophysics Students.

作者信息

Remington Jacob M, Ferrell Jonathon B, Zorman Marlo, Petrucci Adam, Schneebeli Severin T, Li Jianing

机构信息

Department of Chemistry, The University of Vermont, Burlington, VT 05403.

出版信息

Biophysicist (Rockv). 2020 Aug;1(2). doi: 10.35459/tbp.2019.000140. Epub 2020 Aug 13.

Abstract

Recent advances in computer hardware and software, particularly the availability of machine learning libraries, allow the introduction of data-based topics such as machine learning into the Biophysical curriculum for undergraduate and/or graduate levels. However, there are many practical challenges of teaching machine learning to advanced-level students in the biophysics majors, who often do not have a rich computational background. Aiming to overcome such challenges, we present an educational study, including the design of course topics, pedagogical tools, and assessments of student learning, to develop the new methodology to incorporate the basis of machine learning in an existing Biophysical elective course, and engage students in exercises to solve problems in an interdisciplinary field. In general, we observed that students had ample curiosity to learn and apply machine learning algorithms to predict molecular properties. Notably, feedback from the students suggests that care must be taken to ensure student preparations for understanding the data-driven concepts and fundamental coding aspects required for using machine learning algorithms. This work establishes a framework for future teaching approaches that unite machine learning and any existing course in the biophysical curriculum, while also pinpointing the critical challenges that educators and students will likely face.

摘要

计算机硬件和软件的最新进展,尤其是机器学习库的可用性,使得将基于数据的主题(如机器学习)引入本科和/或研究生水平的生物物理课程成为可能。然而,对于生物物理专业的高年级学生而言,教授机器学习存在诸多实际挑战,因为他们通常没有丰富的计算背景。为了克服这些挑战,我们开展了一项教育研究,包括课程主题设计、教学工具以及对学生学习的评估,以开发新方法,将机器学习基础纳入现有的生物物理选修课程,并让学生参与练习,解决跨学科领域的问题。总体而言,我们观察到学生对学习和应用机器学习算法来预测分子特性充满浓厚兴趣。值得注意的是,学生的反馈表明,必须谨慎确保学生为理解使用机器学习算法所需的数据驱动概念和基本编码方面做好准备。这项工作为未来将机器学习与生物物理课程中的任何现有课程相结合的教学方法建立了一个框架,同时也指出了教育工作者和学生可能面临的关键挑战。

相似文献

8
Preparing medical students to teach.培养医学生进行教学。
Acad Med. 2002 Nov;77(11):1175-6. doi: 10.1097/00001888-200211000-00046.

本文引用的文献

2
Improved protein structure prediction using predicted interresidue orientations.利用预测的残基间取向改进蛋白质结构预测。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1496-1503. doi: 10.1073/pnas.1914677117. Epub 2020 Jan 2.
4
End-to-End Differentiable Learning of Protein Structure.端到端可微分蛋白质结构学习
Cell Syst. 2019 Apr 24;8(4):292-301.e3. doi: 10.1016/j.cels.2019.03.006. Epub 2019 Apr 17.
8
Jmol SMILES and Jmol SMARTS: specifications and applications.Jmol SMILES和Jmol SMARTS:规范与应用。
J Cheminform. 2016 Sep 26;8:50. doi: 10.1186/s13321-016-0160-4. eCollection 2016.
9
The protein-folding problem, 50 years on.蛋白质折叠问题:50 年的探索
Science. 2012 Nov 23;338(6110):1042-6. doi: 10.1126/science.1219021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验