Suppr超能文献

一种使用组学数据进行癌症生存预测的集成深度网络。

An Integrated Deep Network for Cancer Survival Prediction Using Omics Data.

作者信息

Hassanzadeh Hamid Reza, Wang May D

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, United States.

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.

出版信息

Front Big Data. 2021 Jul 16;4:568352. doi: 10.3389/fdata.2021.568352. eCollection 2021.

Abstract

As a highly sophisticated disease that humanity faces, cancer is known to be associated with dysregulation of cellular mechanisms in different levels, which demands novel paradigms to capture informative features from different omics modalities in an integrated way. Successful stratification of patients with respect to their molecular profiles is a key step in precision medicine and in tailoring personalized treatment for critically ill patients. In this article, we use an integrated deep belief network to differentiate high-risk cancer patients from the low-risk ones in terms of the overall survival. Our study analyzes RNA, miRNA, and methylation molecular data modalities from both labeled and unlabeled samples to predict cancer survival and subsequently to provide risk stratification. To assess the robustness of our novel integrative analytics, we utilize datasets of three cancer types with 836 patients and show that our approach outperforms the most successful supervised and semi-supervised classification techniques applied to the same cancer prediction problems. In addition, despite the preconception that deep learning techniques require large size datasets for proper training, we have illustrated that our model can achieve better results for moderately sized cancer datasets.

摘要

癌症作为人类面临的一种高度复杂的疾病,已知与不同层面的细胞机制失调有关,这就需要新的范式以综合的方式从不同的组学模式中获取信息特征。根据分子特征对患者进行成功分层是精准医学以及为重症患者量身定制个性化治疗的关键一步。在本文中,我们使用集成深度信念网络从总体生存角度区分高危癌症患者和低危癌症患者。我们的研究分析了来自标记和未标记样本的RNA、miRNA和甲基化分子数据模式,以预测癌症生存情况并随后提供风险分层。为了评估我们新型综合分析方法的稳健性,我们利用了包含836名患者的三种癌症类型的数据集,并表明我们的方法优于应用于相同癌症预测问题的最成功的监督和半监督分类技术。此外,尽管人们 preconception 认为深度学习技术需要大型数据集进行适当训练,但我们已经表明,我们的模型对于中等规模的癌症数据集可以取得更好的结果。 (注:“preconception”此处保留英文,因为未明确其确切含义,无法准确翻译)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/210a/8322661/f75ed2b97287/fdata-04-568352-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验