Ortmayer Mary, Hardy Florence J, Quesne Matthew G, Fisher Karl, Levy Colin, Heyes Derren J, Catlow C Richard A, de Visser Sam P, Rigby Stephen E J, Hay Sam, Green Anthony P
Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.
Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0FA, United Kingdom.
JACS Au. 2021 Jul 26;1(7):913-918. doi: 10.1021/jacsau.1c00145. Epub 2021 May 14.
Nature employs high-energy metal-oxo intermediates embedded within enzyme active sites to perform challenging oxidative transformations with remarkable selectivity. Understanding how different local metal-oxo coordination environments control intermediate reactivity and catalytic function is a long-standing objective. However, conducting structure-activity relationships directly in active sites has proven challenging due to the limited range of amino acid substitutions achievable within the constraints of the genetic code. Here, we use an expanded genetic code to examine the impact of hydrogen bonding interactions on ferryl heme structure and reactivity, by replacing the N-H group of the active site Trp51 of cytochrome peroxidase by an S atom. Removal of a single hydrogen bond stabilizes the porphyrin π-cation radical state of CP W191F compound I. In contrast, this modification leads to more basic and reactive neutral ferryl heme states, as found in CP W191F compound II and the wild-type ferryl heme-Trp191 radical pair of compound I. This increased reactivity manifests in a >60-fold activity increase toward phenolic substrates but remarkably has negligible effects on oxidation of the biological redox partner cyt. Our data highlight how Trp51 tunes the lifetimes of key ferryl intermediates and works in synergy with the redox active Trp191 and a well-defined substrate binding site to regulate catalytic function. More broadly, this work shows how noncanonical substitutions can advance our understanding of active site features governing metal-oxo structure and reactivity.
自然界利用嵌入酶活性位点的高能金属-氧中间体,以卓越的选择性进行具有挑战性的氧化转化反应。了解不同的局部金属-氧配位环境如何控制中间体的反应性和催化功能,是一个长期目标。然而,由于在遗传密码的限制范围内可实现的氨基酸取代范围有限,直接在活性位点进行构效关系研究已被证明具有挑战性。在此,我们利用扩展遗传密码,通过将细胞色素过氧化物酶活性位点的色氨酸51的N-H基团替换为硫原子,来研究氢键相互作用对高铁血红素结构和反应性的影响。去除单个氢键可稳定细胞色素过氧化物酶W191F化合物I的卟啉π-阳离子自由基状态。相比之下,这种修饰导致更碱性且反应性更强的中性高铁血红素状态,如在细胞色素过氧化物酶W191F化合物II以及化合物I的野生型高铁血红素-色氨酸191自由基对中所发现的那样。这种增强的反应性表现为对酚类底物的活性增加>60倍,但对生物氧化还原伙伴细胞色素的氧化作用的影响却微不足道。我们的数据突出了色氨酸51如何调节关键高铁中间体的寿命,并与氧化还原活性的色氨酸191以及明确的底物结合位点协同作用来调节催化功能。更广泛地说,这项工作展示了非标准取代如何推动我们对控制金属-氧结构和反应性的活性位点特征的理解。