Han Liuliu, Maccari Fernando, Soldatov Ivan, Peter Nicolas J, Souza Filho Isnaldi R, Schäfer Rudolf, Gutfleisch Oliver, Li Zhiming, Raabe Dierk
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
Department of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Nat Commun. 2023 Dec 9;14(1):8176. doi: 10.1038/s41467-023-43953-1.
Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.
可持续能源生产的快速增长需要交通、工业和家庭大规模电气化,其中电动机是关键部件。这些电动机需要具有高饱和磁化强度、机械强度和热稳定性的软磁体才能高效安全地运行。在一种材料中协调这些性能具有挑战性,因为用于提高强度的热稳定微观结构与磁性能相冲突。在此,我们提出一种结合热稳定性、软磁响应和高机械强度的材料概念。这种强韧性软铁磁体是通过一种多组分合金实现的,其中具有大纵横比的析出物形成了魏德曼花纹。该材料在高温下表现出优异的磁性能和机械性能,而具有相同成分但无析出物的参考合金在相同温度下显著失去其磁化强度和强度。这项工作为开发用于高温应用的软磁体提供了一条新途径,能够在恶劣的运行条件下高效利用可持续电能。