Suppr超能文献

使用与医学无关的风格迁移增强学习计算病理学的领域不可知视觉表示。

Learning Domain-Agnostic Visual Representation for Computational Pathology Using Medically-Irrelevant Style Transfer Augmentation.

出版信息

IEEE Trans Med Imaging. 2021 Dec;40(12):3945-3954. doi: 10.1109/TMI.2021.3101985. Epub 2021 Nov 30.

Abstract

Suboptimal generalization of machine learning models on unseen data is a key challenge which hampers the clinical applicability of such models to medical imaging. Although various methods such as domain adaptation and domain generalization have evolved to combat this challenge, learning robust and generalizable representations is core to medical image understanding, and continues to be a problem. Here, we propose STRAP (Style TRansfer Augmentation for histoPathology), a form of data augmentation based on random style transfer from non-medical style sources such as artistic paintings, for learning domain-agnostic visual representations in computational pathology. Style transfer replaces the low-level texture content of an image with the uninformative style of randomly selected style source image, while preserving the original high-level semantic content. This improves robustness to domain shift and can be used as a simple yet powerful tool for learning domain-agnostic representations. We demonstrate that STRAP leads to state-of-the-art performance, particularly in the presence of domain shifts, on two particular classification tasks in computational pathology. Our code is available at https://github.com/rikiyay/style-transfer-for-digital-pathology.

摘要

机器学习模型在未见数据上的泛化效果不佳是一个关键挑战,这限制了此类模型在医学成像中的临床适用性。尽管已经出现了各种方法,如领域适应和领域泛化,以应对这一挑战,但学习鲁棒和可泛化的表示仍然是医学图像理解的核心问题。在这里,我们提出了 STRAP(基于非医学风格源的随机风格迁移的样式转移增强,用于计算病理学中学习与领域无关的视觉表示),这是一种基于随机从艺术画等非医学风格源进行样式迁移的数据增强形式,用于学习计算病理学中的与领域无关的视觉表示。样式迁移用随机选择的样式源图像的无信息样式替换图像的低水平纹理内容,同时保留原始的高水平语义内容。这提高了对领域转移的鲁棒性,可以作为学习与领域无关表示的简单而强大的工具。我们证明,在计算病理学中的两个特定分类任务中,STRAP 可以在存在领域转移的情况下实现最先进的性能。我们的代码可在 https://github.com/rikiyay/style-transfer-for-digital-pathology 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验