Suppr超能文献

老年人的心血管损伤表型与全因和心血管疾病死亡率。

Cardiovascular damage phenotypes and all-cause and CVD mortality in older adults.

机构信息

Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR.

Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China.

出版信息

Ann Epidemiol. 2021 Nov;63:35-40. doi: 10.1016/j.annepidem.2021.07.012. Epub 2021 Jul 30.

Abstract

PURPOSE

The association between CVD risk factors and mortality is well established, however, current tools for addressing subgroups have focused on the overall burden of disease. The identification of risky combinations of characteristics may lead to a better understanding of physiologic pathways that underlie morbidity and mortality in older adults.

METHODS

Participants included 5067 older adults from the Cardiovascular Health Study, followed for up to 6 years. Using latent class analysis (LCA), we created CV damage phenotypes based on probabilities of abnormal brain infarctions, major echocardiogram abnormalities, N-terminal probrain natriuretic peptide, troponin T, interleukin-6, c reactive-protein, galectin-3, cystatin C. We assigned class descriptions based on the probability of having an abnormality among risk factors, such that a healthy phenotype would have low probabilities in all risk factors. Participants were assigned to phenotypes based on the maximum probability of membership. We used Cox-proportional hazards regression to evaluate the association between the categorical CV damage phenotype and all-cause and CVD-mortality.

RESULTS

The analysis yielded 5 CV damage phenotypes consistent with the following descriptions: healthy (59%), cardio-renal (11%), cardiac (15%), multisystem morbidity (6%), and inflammatory (9%). All four phenotypes were statistically associated with a greater risk of all-cause mortality when compared with the healthy phenotype. The multisystem morbidity phenotype had the greatest risk of all-cause death (HR: 4.02; 95% CI: 3.44, 4.70), and CVD-mortality (HR: 4.90, 95% CI: 3.95, 6.06).

CONCLUSIONS

Five CV damage phenotypes emerged from CVD risk factor measures. CV damage across multiple systems confers a greater mortality risk compared to damage in any single domain.

摘要

目的

心血管疾病风险因素与死亡率之间的关联已得到充分证实,然而,目前用于解决亚组问题的工具主要关注疾病的总体负担。识别特征的风险组合可能有助于更好地理解导致老年人发病率和死亡率的生理途径。

方法

参与者包括来自心血管健康研究的 5067 名老年人,随访时间长达 6 年。我们使用潜在类别分析(LCA),根据异常脑梗死、主要超声心动图异常、N 末端脑利钠肽前体、肌钙蛋白 T、白细胞介素 6、C 反应蛋白、半乳糖凝集素 3、胱抑素 C 的异常概率创建 CV 损伤表型。我们根据危险因素中异常的概率为每个类别描述赋值,因此健康表型在所有危险因素中的概率都较低。根据成员的最大概率为参与者分配表型。我们使用 Cox 比例风险回归评估分类 CV 损伤表型与全因和 CVD 死亡率之间的关联。

结果

分析产生了 5 种与以下描述一致的 CV 损伤表型:健康型(59%)、心肾型(11%)、心脏型(15%)、多系统发病型(6%)和炎症型(9%)。与健康表型相比,所有四种表型均与全因死亡率增加具有统计学相关性。多系统发病表型的全因死亡风险最高(HR:4.02;95%CI:3.44,4.70),CVD 死亡率也最高(HR:4.90,95%CI:3.95,6.06)。

结论

从 CVD 风险因素测量中得出了 5 种 CV 损伤表型。与单一系统损伤相比,多个系统的 CV 损伤导致的死亡率风险更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75ab/8562895/23881e87a500/nihms-1747086-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验