Suppr超能文献

识别美国老年人的多种慢性病模式:潜在类别分析的应用

Identifying Patterns of Multimorbidity in Older Americans: Application of Latent Class Analysis.

作者信息

Whitson Heather E, Johnson Kimberly S, Sloane Richard, Cigolle Christine T, Pieper Carl F, Landerman Lawrence, Hastings Susan N

机构信息

Department of Medicine, Duke University Medical Center, Durham, North Carolina.

Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina.

出版信息

J Am Geriatr Soc. 2016 Aug;64(8):1668-73. doi: 10.1111/jgs.14201. Epub 2016 Jun 16.

Abstract

OBJECTIVES

To define multimorbidity "classes" empirically based on patterns of disease co-occurrence in older Americans and to examine how class membership predicts healthcare use.

DESIGN

Retrospective cohort study.

SETTING

Nationally representative sample of Medicare beneficiaries in file years 1999-2007.

PARTICIPANTS

Individuals aged 65 and older in the Medicare Beneficiary Survey who had data available for at least 1 year after index interview (N = 14,052).

MEASUREMENTS

Surveys (self-report) were used to assess chronic conditions, and latent class analysis (LCA) was used to define multimorbidity classes based on the presence or absence of 13 conditions. All participants were assigned to a best-fit class. Primary outcomes were hospitalizations and emergency department visits over 1 year.

RESULTS

The primary LCA identified six classes. The largest portion of participants (32.7%) was assigned to the minimal disease class, in which most persons had fewer than two of the conditions. The other five classes represented various degrees and patterns of multimorbidity. Usage rates were higher in classes with greater morbidity, but many individuals could not be assigned to a particular class with confidence (sample misclassification error estimate = 0.36). Number of conditions predicted outcomes at least as well as class membership.

CONCLUSION

Although recognition of general patterns of disease co-occurrence is useful for policy planning, the heterogeneity of persons with significant multimorbidity (≥3 conditions) defies neat classification. A simple count of conditions may be preferable for predicting usage.

摘要

目的

基于美国老年人疾病共现模式,实证性地定义多重疾病“类别”,并研究类别归属如何预测医疗服务利用情况。

设计

回顾性队列研究。

背景

1999 - 2007年医保受益人的全国代表性样本。

参与者

医保受益人调查中65岁及以上且在首次访谈后至少有1年可用数据的个体(N = 14,052)。

测量

通过调查(自我报告)评估慢性病状况,并使用潜在类别分析(LCA)基于13种疾病的有无来定义多重疾病类别。所有参与者被分配到最适合的类别。主要结局是1年内的住院和急诊就诊情况。

结果

主要的潜在类别分析确定了六个类别。最大比例的参与者(32.7%)被分配到疾病最少的类别,其中大多数人患有的疾病少于两种。其他五个类别代表了多重疾病的不同程度和模式。发病率较高的类别使用率也较高,但许多个体无法被自信地分配到特定类别(样本错误分类误差估计 = 0.36)。疾病数量对结局的预测至少与类别归属一样好。

结论

虽然认识疾病共现的一般模式对政策规划有用,但患有严重多重疾病(≥3种疾病)的人群的异质性难以进行精确分类。对于预测医疗服务利用情况,简单计算疾病数量可能更可取。

相似文献

1
Identifying Patterns of Multimorbidity in Older Americans: Application of Latent Class Analysis.
J Am Geriatr Soc. 2016 Aug;64(8):1668-73. doi: 10.1111/jgs.14201. Epub 2016 Jun 16.
4
5
Multimorbidity patterns and their relationship to mortality in the US older adult population.
PLoS One. 2021 Jan 20;16(1):e0245053. doi: 10.1371/journal.pone.0245053. eCollection 2021.
6
Defining Multimorbidity and Its Impact in Older United States Veterans Newly Treated for Multiple Myeloma.
J Natl Cancer Inst. 2021 Aug 2;113(8):1084-1093. doi: 10.1093/jnci/djab007.
7
Comorbidity Clusters Among Adults With Cerebral Palsy: A Latent Class Analysis.
Am J Prev Med. 2024 Jun;66(6):971-979. doi: 10.1016/j.amepre.2024.01.011. Epub 2024 Jan 24.
8
Use of latent class analysis to identify multimorbidity patterns and associated factors in Korean adults aged 50 years and older.
PLoS One. 2019 Nov 13;14(11):e0216259. doi: 10.1371/journal.pone.0216259. eCollection 2019.
9
Outcomes in Older Adults with Multimorbidity Associated with Predominant Provider of Care Specialty.
J Am Geriatr Soc. 2017 Sep;65(9):1916-1923. doi: 10.1111/jgs.14882. Epub 2017 Apr 8.
10
Prevalence and patterns of multimorbidity in the Jamaican population: A comparative analysis of latent variable models.
PLoS One. 2020 Jul 23;15(7):e0236034. doi: 10.1371/journal.pone.0236034. eCollection 2020.

引用本文的文献

1
Mapping Healthcare Needs: A Systematic Review of Population Stratification Tools.
Med Sci (Basel). 2025 Aug 19;13(3):145. doi: 10.3390/medsci13030145.
2
Patterns of multimorbidity in older adults with multiple myeloma: An analysis of SEER-Medicare.
PLoS One. 2025 Aug 20;20(8):e0330331. doi: 10.1371/journal.pone.0330331. eCollection 2025.
7
Insights into relationship of environmental inequalities and multimorbidity: a population-based study.
Environ Health. 2024 Nov 14;23(1):99. doi: 10.1186/s12940-024-01133-8.
8
Multimorbidity patterns and associated factors in a megacity: a cross-sectional study.
Rev Saude Publica. 2024 Jul 26;58:26. doi: 10.11606/s1518-8787.2024058006058. eCollection 2024.
9
Profiles of healthcare use of persons living with dementia: A population-based cohort study.
Geriatr Gerontol Int. 2024 Aug;24(8):789-796. doi: 10.1111/ggi.14930. Epub 2024 Jul 5.

本文引用的文献

1
Optimizing health for persons with multiple chronic conditions.
JAMA. 2014 Sep 24;312(12):1199-200. doi: 10.1001/jama.2014.10181.
2
Multiple chronic conditions and life expectancy: a life table analysis.
Med Care. 2014 Aug;52(8):688-94. doi: 10.1097/MLR.0000000000000166.
4
Multimorbidity and comorbidity of chronic diseases among the senior Australians: prevalence and patterns.
PLoS One. 2014 Jan 8;9(1):e83783. doi: 10.1371/journal.pone.0083783. eCollection 2014.
5
Complex comorbidity clusters in OEF/OIF veterans: the polytrauma clinical triad and beyond.
Med Care. 2014 Feb;52(2):172-81. doi: 10.1097/MLR.0000000000000059.
7
Systematic review of comorbidity indices for administrative data.
Med Care. 2012 Dec;50(12):1109-18. doi: 10.1097/MLR.0b013e31825f64d0.
8
Designing health care for the most common chronic condition--multimorbidity.
JAMA. 2012 Jun 20;307(23):2493-4. doi: 10.1001/jama.2012.5265.
9
Diabetes and hypertension: is there a common metabolic pathway?
Curr Atheroscler Rep. 2012 Apr;14(2):160-6. doi: 10.1007/s11883-012-0227-2.
10
Managing multiple chronic conditions: a strategic framework for improving health outcomes and quality of life.
Public Health Rep. 2011 Jul-Aug;126(4):460-71. doi: 10.1177/003335491112600403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验