Berner Rico, Yanchuk Serhiy, Maistrenko Yuri, Schöll Eckehard
Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
Institute of Mathematics, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany.
Chaos. 2021 Jul;31(7):073128. doi: 10.1063/5.0056664.
Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.
耦合相位振子网络在涌现集体现象的分析中起着重要作用。在本文中,我们引入了广义m-展开态,它构成了具有零第m阶参数的锁相态的一个特殊子类。这类状态通常表现出非相干动力学,并且它们常常产生高维解族(展开流形)。对于一般类别的相位振子网络,我们给出了展开态的显式线性稳定性条件,并用著名的Kuramoto-Sakaguchi模型举例说明我们的结果。重要的是,我们的稳定性条件仅用几个可观测量来表示,比如序参量或雅可比矩阵的迹。因此,这些条件很简单,适用于任意规模的网络。我们将研究结果推广到具有惯性的相位振子以及自适应耦合相位振子模型。