Suppr超能文献

通过自适应耦合相位振荡器网络对肿瘤疾病和脓毒症进行建模

Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators.

作者信息

Sawicki Jakub, Berner Rico, Löser Thomas, Schöll Eckehard

机构信息

Potsdam Institute for Climate Impact Research, Potsdam, Germany.

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany.

出版信息

Front Netw Physiol. 2022 Jan 17;1:730385. doi: 10.3389/fnetp.2021.730385. eCollection 2021.

Abstract

In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.

摘要

在本研究中,我们为肿瘤或感染所致病理状态的建模提供了一种动态系统视角。以先天免疫系统为参考点建立了一个统一的疾病模型。基于实质细胞与免疫细胞(细胞因子)之间的相互作用以及实质细胞、免疫细胞和细胞因子的共同进化动力学,我们提出了一个用于癌症发生和脓毒症的双层网络模型。我们的目的是表明,在生理和病理情况下,实质与基质(免疫层)之间复杂的细胞协作可以通过一个简单的相位振荡器范式模型进行定性和功能描述。借此,我们通过健康稳态(频率同步)的失稳以及病理状态(不同步或多频簇)的出现来解释癌症发生、肿瘤进展和脓毒症。实质细胞(代谢)和非特异性免疫细胞(先天免疫系统反应)的耦合动力学由双层的节点表示。细胞因子相互作用通过代表免疫细胞(具有快速适应时间尺度)和实质细胞(具有缓慢适应时间尺度)的节点之间以及双层网络中实质细胞与免疫细胞对之间的自适应耦合权重来建模(固定双向耦合)。由此,可以在正确的功能背景下描述癌症发生、脓毒症中的器官功能障碍以及复发风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验