Suppr超能文献

耦合Kuramoto振子网络中神经调节对同步和网络重组的影响。

Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.

作者信息

Aktay Sinan, Sander Leonard M, Zochowski Michal

机构信息

Biophysics Program, <a href="https://ror.org/00jmfr291">University of Michigan, Ann Arbor</a>, Michigan 48105, USA.

Department of Physics, <a href="https://ror.org/00jmfr291">University of Michigan, Ann Arbor</a>, Michigan 48105, USA.

出版信息

Phys Rev E. 2024 Oct;110(4-1):044401. doi: 10.1103/PhysRevE.110.044401.

Abstract

Neuromodulatory processes in the brain can critically change signal processing on a cellular level, leading to dramatic changes in network level reorganization. Here, we use coupled nonidentical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity-dependent plasticity may alter network reorganization. We first show that, when plasticity is absent, the Type 1 networks with symmetric adjacency matrix, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics. However, interestingly, Type 1 networks with an asymmetric connectivity matrix can produce stable synchrony (so-called splay states) with complex phase relationships. At the same time, Type 2 networks synchronize independent of the symmetry of their connectivity matrix, with oscillators locked so that those with higher natural frequency have a constant phase lead as compared to those with lower natural frequency. This relationship establishes a robust mapping between the frequency and oscillators' phases in the network, leading to structure and frequency mapping when plasticity is present. Finally, we show that biologically realistic, phase-locking dependent, connection plasticity naturally produces splay states in Type 1 networks that do not display the structure-frequency reorganization observed in synchronized Type II networks. These results indicate that the formation of splay states in the brain could be a common phenomenon.

摘要

大脑中的神经调节过程能够在细胞水平上显著改变信号处理,进而导致网络水平的重组发生巨大变化。在此,我们使用耦合的非相同Kuramoto振子来研究,由不同乙酰胆碱水平介导的从1型到2型相位响应曲线形状的变化,与活动依赖的可塑性相结合,如何改变网络重组。我们首先表明,当不存在可塑性时,具有对称邻接矩阵的1型网络,正如预期的那样,表现出异步动力学,具有最高自然频率的振子在相位动力学方面稳健地演化得更快。然而,有趣的是,具有不对称连接矩阵的1型网络可以产生具有复杂相位关系的稳定同步(所谓的展开状态)。同时,2型网络的同步与它们连接矩阵的对称性无关,振子被锁定,使得具有较高自然频率的振子相比于具有较低自然频率的振子具有恒定的相位领先。这种关系在网络中的频率和振子相位之间建立了稳健的映射,当存在可塑性时导致结构和频率映射。最后,我们表明,生物学上现实的、依赖锁相的连接可塑性自然地在1型网络中产生展开状态,而这些网络不会显示出在同步的2型网络中观察到的结构 - 频率重组。这些结果表明,大脑中展开状态的形成可能是一种常见现象。

相似文献

1
2
3
Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036206. doi: 10.1103/PhysRevE.83.036206. Epub 2011 Mar 18.
4
Path-dependent dynamics induced by rewiring networks of inertial oscillators.
Phys Rev E. 2022 Feb;105(2-1):024304. doi: 10.1103/PhysRevE.105.024304.
6
Plasticity and learning in a network of coupled phase oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041906. doi: 10.1103/PhysRevE.65.041906. Epub 2002 Mar 26.
8
Complex dynamics in adaptive phase oscillator networks.
Chaos. 2023 May 1;33(5). doi: 10.1063/5.0133190.
9
Dynamics of phase oscillator networks with synaptic weight and structural plasticity.
Sci Rep. 2022 Sep 2;12(1):15003. doi: 10.1038/s41598-022-19417-9.
10
Optimally frequency-synchronized networks of nonidentical Kuramoto oscillators.
Phys Rev E. 2021 Oct;104(4-1):044211. doi: 10.1103/PhysRevE.104.044211.

本文引用的文献

1
Generalized splay states in phase oscillator networks.
Chaos. 2021 Jul;31(7):073128. doi: 10.1063/5.0056664.
2
Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future.
Neuron. 2019 Aug 21;103(4):563-581. doi: 10.1016/j.neuron.2019.05.041.
3
Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors.
Front Neural Circuits. 2017 Dec 13;11:102. doi: 10.3389/fncir.2017.00102. eCollection 2017.
4
Cellular and neurochemical basis of sleep stages in the thalamocortical network.
Elife. 2016 Nov 16;5:e18607. doi: 10.7554/eLife.18607.
5
Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.
Cereb Cortex. 2016 Jan;26(1):414-26. doi: 10.1093/cercor/bhv227. Epub 2015 Oct 15.
6
Neuromodulation of brain states.
Neuron. 2012 Oct 4;76(1):209-22. doi: 10.1016/j.neuron.2012.09.012.
7
Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells.
Front Neural Circuits. 2012 Feb 20;6:5. doi: 10.3389/fncir.2012.00005. eCollection 2012.
8
Phase-response curves and synchronized neural networks.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 12;365(1551):2407-22. doi: 10.1098/rstb.2009.0292.
9
Synchronous neural activity and memory formation.
Curr Opin Neurobiol. 2010 Apr;20(2):150-5. doi: 10.1016/j.conb.2010.02.006. Epub 2010 Mar 18.
10
Neural synchrony in cortical networks: history, concept and current status.
Front Integr Neurosci. 2009 Jul 30;3:17. doi: 10.3389/neuro.07.017.2009. eCollection 2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验