School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
Mikrochim Acta. 2021 Aug 2;188(8):284. doi: 10.1007/s00604-021-04886-y.
An aptasensor for electrochemical detection of carbendazim is reported with mulberry fruit-like gold nanocrystal (MF-Au)/multiple graphene aerogel (MGA) and DNA cycle amplification. HAuCl was reduced by ascorbic acid in a CTAC solution containing KBr and KI and formed trioctahedron gold nanocrystal. The gold nanocrystal underwent structural evolution under enantioselective direction of L-cysteine. The resulting MF-Au shows a mulberry fruit-like nanostructure composed of gold nanocrystals of about 200 nm as the core and many irregular gold nanoparticles of about 30 nm as the shell. The exposure of high-index facets improves the catalytic activity of MF-Au. MF-Au/MGA was used for the construction of an aptasensor for electrochemical detection of carbendazim. The aptamer hybridizes with assistant strand DNA to form duplex DNA. Carbendazim binds with the formed duplex DNA to release assistant strand DNA, triggering one three-cascade DNA cycle. The utilization of a DNA cycle allows one carbendazim molecule to bring many methylene blue-labeled DNA fragments to the electrode surface. This promotes significant signal amplification due to the redox reaction of methylene blue. The detection signal is further enhanced by the catalysis of MF-Au and MGA towards the redox of methylene blue. A differential pulse voltammetric signal, best measured at - 0.32 V vs. Ag/AgCl, increases linearly with the carbendazim concentration ranging from 1.0 × 10 to 1.0 × 10 M with a detection limit of 4.4 × 10 M. The method provides ultrahigh sensitivity and selectivity and was successfully applied to the electrochemical detection of carbendazim in cucumber. This study reports on an ultrasensitive aptasensor for electrochemical detection of carbendazim in cucumber based on mulberry fruit-like gold nanocrystal-multiple graphene aerogel and DNA cycle double amplification.
电化学检测多杀菌素的适体传感器的报告,采用了桑果状金纳米晶体(MF-Au)/多石墨烯气凝胶(MGA)和 DNA 循环扩增。在含有 KBr 和 KI 的 CTAC 溶液中,抗坏血酸还原 HAuCl 形成三辛面体金纳米晶体。在 L-半胱氨酸的对映选择性方向下,金纳米晶体经历了结构演变。所得 MF-Au 呈现出由约 200nm 的金纳米晶作为核和约 30nm 的许多不规则金纳米粒子作为壳组成的桑果状纳米结构。高指数面的暴露提高了 MF-Au 的催化活性。MF-Au/MGA 用于构建电化学检测多杀菌素的适体传感器。适体与辅助链 DNA 杂交形成双链 DNA。多杀菌素与形成的双链 DNA 结合,释放辅助链 DNA,引发一个三链 DNA 循环。DNA 循环的利用使得一个多杀菌素分子将许多亚甲基蓝标记的 DNA 片段带到电极表面。由于亚甲基蓝的氧化还原反应,这促进了显著的信号放大。MF-Au 和 MGA 对亚甲基蓝氧化还原的催化作用进一步增强了检测信号。差分脉冲伏安信号,最佳测量值为-0.32V 相对于 Ag/AgCl,线性增加多杀菌素浓度范围从 1.0×10到 1.0×10 M,检测限为 4.4×10 M。该方法提供了超高的灵敏度和选择性,并成功应用于黄瓜中多杀菌素的电化学检测。本研究报道了一种基于桑果状金纳米晶体-多石墨烯气凝胶和 DNA 循环双重扩增的超灵敏电化学检测黄瓜中多杀菌素的适体传感器。