Suppr超能文献

金刚乙胺可与甲型流感病毒M2质子通道结合并对其产生抑制作用,且无对映体特异性。

Rimantadine Binds to and Inhibits the Influenza A M2 Proton Channel without Enantiomeric Specificity.

作者信息

Thomaston Jessica L, Samways Marley L, Konstantinidi Athina, Ma Chunlong, Hu Yanmei, Bruce Macdonald Hannah E, Wang Jun, Essex Jonathan W, DeGrado William F, Kolocouris Antonios

机构信息

Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, University of California, San Francisco, California 94158, United States.

School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.

出版信息

Biochemistry. 2021 Aug 3. doi: 10.1021/acs.biochem.1c00437.

Abstract

The influenza A M2 wild-type (WT) proton channel is the target of the anti-influenza drug rimantadine. Rimantadine has two enantiomers, though most investigations into drug binding and inhibition have used a racemic mixture. Solid-state NMR experiments using the full length-M2 WT have shown significant spectral differences that were interpreted to indicate tighter binding for ()- vs ()-rimantadine. However, it was unclear if this correlates with a functional difference in drug binding and inhibition. Using X-ray crystallography, we have determined that both ()- and ()-rimantadine bind to the M2 WT pore with slight differences in the hydration of each enantiomer. However, this does not result in a difference in potency or binding kinetics, as shown by similar values for , , and in electrophysiological assays and for EC values in cellular assays. We concluded that the slight differences in hydration for the ()- and ()-rimantadine enantiomers are not relevant to drug binding or channel inhibition. To further explore the effect of the hydration of the M2 pore on binding affinity, the water structure was evaluated by grand canonical ensemble molecular dynamics simulations as a function of the chemical potential of the water. Initially, the two layers of ordered water molecules between the bound drug and the channel's gating His37 residues mask the drug's chirality. As the chemical potential becomes more unfavorable, the drug translocates down to the lower water layer, and the interaction becomes more sensitive to chirality. These studies suggest the feasibility of displacing the upper water layer and specifically recognizing the lower water layers in novel drugs.

摘要

甲型流感病毒M2野生型(WT)质子通道是抗流感药物金刚乙胺的作用靶点。金刚乙胺有两种对映体,不过大多数关于药物结合和抑制作用的研究都使用了外消旋混合物。使用全长M2 WT进行的固态核磁共振实验显示出显著的光谱差异,这些差异被解释为表明()-金刚乙胺比()-金刚乙胺的结合更紧密。然而,尚不清楚这是否与药物结合和抑制作用中的功能差异相关。通过X射线晶体学,我们确定()-和()-金刚乙胺都与M2 WT孔结合,每种对映体的水合作用略有不同。然而,这并没有导致效力或结合动力学的差异,电生理分析中的、、值以及细胞分析中的EC值都显示出相似性。我们得出结论,()-和()-金刚乙胺对映体水合作用的细微差异与药物结合或通道抑制无关。为了进一步探索M2孔的水合作用对结合亲和力的影响,通过巨正则系综分子动力学模拟评估了水结构作为水化学势的函数。最初,结合药物与通道门控His37残基之间的两层有序水分子掩盖了药物的手性。随着化学势变得更不利,药物向下转移到较低的水层,并且相互作用对手性变得更敏感。这些研究表明在新型药物中取代上层水层并特异性识别下层水层的可行性。

相似文献

2
Unraveling the Binding, Proton Blockage, and Inhibition of Influenza M2 WT and S31N by Rimantadine Variants.
ACS Med Chem Lett. 2018 Jan 29;9(3):198-203. doi: 10.1021/acsmedchemlett.7b00458. eCollection 2018 Mar 8.
3
Differential Binding of Rimantadine Enantiomers to Influenza A M2 Proton Channel.
J Am Chem Soc. 2016 Feb 10;138(5):1506-9. doi: 10.1021/jacs.5b13129. Epub 2016 Jan 28.
4
Affinity of Rimantadine Enantiomers against Influenza A/M2 Protein Revisited.
ACS Med Chem Lett. 2017 Jan 27;8(2):145-150. doi: 10.1021/acsmedchemlett.6b00311. eCollection 2017 Feb 9.
5
An amantadine-sensitive chimeric BM2 ion channel of influenza B virus has implications for the mechanism of drug inhibition.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18775-9. doi: 10.1073/pnas.0910584106. Epub 2009 Oct 19.
6
Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10967-72. doi: 10.1073/pnas.0804958105. Epub 2008 Jul 31.
7
[Design of an Efficient Inhibitor for the Influenza A Virus M2 Ion Channel].
Mol Biol (Mosk). 2020 Mar-Apr;54(2):321-332. doi: 10.31857/S0026898420020160.
8
How amantadine and rimantadine inhibit proton transport in the M2 protein channel.
J Mol Graph Model. 2008 Oct;27(3):342-8. doi: 10.1016/j.jmgm.2008.06.002. Epub 2008 Jun 8.
9
Computational investigation of drug-resistant mutant of M2 proton channel (S31N) against rimantadine.
Cell Biochem Biophys. 2014 Nov;70(2):975-82. doi: 10.1007/s12013-014-0005-6.

引用本文的文献

1
A bacteria-based search for drugs against avian and swine flu yields a potent and resistance-resilient channel blocker.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2502240122. doi: 10.1073/pnas.2502240122. Epub 2025 Aug 1.
4
Alchemical Free Energy Calculations on Membrane-Associated Proteins.
J Chem Theory Comput. 2023 Nov 14;19(21):7437-7458. doi: 10.1021/acs.jctc.3c00365. Epub 2023 Oct 30.
6
Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
J Chem Theory Comput. 2023 Feb 14;19(3):1050-1062. doi: 10.1021/acs.jctc.2c00823. Epub 2023 Jan 24.
7
Water Networks in Complexes between Proteins and FDA-Approved Drugs.
J Chem Inf Model. 2023 Jan 9;63(1):387-396. doi: 10.1021/acs.jcim.2c01225. Epub 2022 Dec 5.
8
From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus.
Front Mol Biosci. 2022 Jan 14;8:796229. doi: 10.3389/fmolb.2021.796229. eCollection 2021.
9
Spiers Memorial Lecture: Analysis and design of membrane-interactive peptides.
Faraday Discuss. 2021 Dec 24;232(0):9-48. doi: 10.1039/d1fd00061f.

本文引用的文献

1
grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
J Chem Inf Model. 2020 Oct 26;60(10):4436-4441. doi: 10.1021/acs.jcim.0c00648. Epub 2020 Sep 19.
2
Investigation of the Drug Resistance Mechanism of M2-S31N Channel Blockers through Biomolecular Simulations and Viral Passage Experiments.
ACS Pharmacol Transl Sci. 2020 Mar 31;3(4):666-675. doi: 10.1021/acsptsci.0c00018. eCollection 2020 Aug 14.
3
Influenza and antiviral resistance: an overview.
Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1201-1208. doi: 10.1007/s10096-020-03840-9. Epub 2020 Feb 13.
5
Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations.
J Chem Theory Comput. 2018 Dec 11;14(12):6586-6597. doi: 10.1021/acs.jctc.8b00614. Epub 2018 Nov 19.
6
Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters.
J Am Chem Soc. 2018 Nov 14;140(45):15219-15226. doi: 10.1021/jacs.8b06741. Epub 2018 Sep 12.
7
Unraveling the Binding, Proton Blockage, and Inhibition of Influenza M2 WT and S31N by Rimantadine Variants.
ACS Med Chem Lett. 2018 Jan 29;9(3):198-203. doi: 10.1021/acsmedchemlett.7b00458. eCollection 2018 Mar 8.
8
Profiling the in vitro drug-resistance mechanism of influenza A viruses towards the AM2-S31N proton channel blockers.
Antiviral Res. 2018 May;153:10-22. doi: 10.1016/j.antiviral.2018.03.002. Epub 2018 Mar 6.
10
Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
J Chem Inf Model. 2017 Dec 26;57(12):2911-2937. doi: 10.1021/acs.jcim.7b00564. Epub 2017 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验