文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用非平衡候选蒙特卡罗方法增强对被阻塞水位置的巨正则抽样。

Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.

机构信息

School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.

Department of Pharmaceutical Sciences, University of California, Irvine, California92697, United States.

出版信息

J Chem Theory Comput. 2023 Feb 14;19(3):1050-1062. doi: 10.1021/acs.jctc.2c00823. Epub 2023 Jan 24.


DOI:10.1021/acs.jctc.2c00823
PMID:36692215
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9933432/
Abstract

Water molecules play a key role in many biomolecular systems, particularly when bound at protein-ligand interfaces. However, molecular simulation studies on such systems are hampered by the relatively long time scales over which water exchange between a protein and solvent takes place. Grand canonical Monte Carlo (GCMC) is a simulation technique that avoids this issue by attempting the insertion and deletion of water molecules within a given structure. The approach is constrained by low acceptance probabilities for insertions in congested systems, however. To address this issue, here, we combine GCMC with nonequilibium candidate Monte Carlo (NCMC) to yield a method that we refer to as grand canonical nonequilibrium candidate Monte Carlo (GCNCMC), in which the water insertions and deletions are carried out in a gradual, nonequilibrium fashion. We validate this new approach by comparing GCNCMC and GCMC simulations of bulk water and three protein binding sites. We find that not only is the efficiency of the water sampling improved by GCNCMC but that it also results in increased sampling of ligand conformations in a protein binding site, revealing new water-mediated ligand-binding geometries that are not observed using alternative enhanced sampling techniques.

摘要

水分子在许多生物分子体系中起着关键作用,特别是在蛋白质-配体界面结合时。然而,由于蛋白质与溶剂之间的水分子交换需要相对较长的时间尺度,因此对这类体系的分子模拟研究受到了阻碍。巨正则蒙特卡罗(GCMC)是一种模拟技术,它通过在给定结构内尝试插入和删除水分子来避免这个问题。然而,在拥挤的系统中,插入的接受概率较低,这限制了该方法的应用。为了解决这个问题,我们在这里将 GCMC 与非平衡候选蒙特卡罗(NCMC)相结合,得到一种我们称之为巨正则非平衡候选蒙特卡罗(GCNCMC)的方法,其中水分子的插入和删除是以逐渐的、非平衡的方式进行的。我们通过比较 GCNCMC 和 GCMC 对体相水和三个蛋白质结合位点的模拟来验证这种新方法。我们发现,GCNCMC 不仅提高了水分子采样的效率,而且还增加了蛋白质结合位点中配体构象的采样,揭示了新的水介导的配体结合几何形状,这些几何形状是使用替代增强采样技术观察不到的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/3d72663dd413/ct2c00823_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/9e29ccf5f4cc/ct2c00823_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/4772bcfb92cf/ct2c00823_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/6c6bbfc3f24c/ct2c00823_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/e1a04b706f01/ct2c00823_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/41af2fb10e1e/ct2c00823_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/b423ffe1c01e/ct2c00823_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/3d72663dd413/ct2c00823_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/9e29ccf5f4cc/ct2c00823_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/4772bcfb92cf/ct2c00823_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/6c6bbfc3f24c/ct2c00823_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/e1a04b706f01/ct2c00823_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/41af2fb10e1e/ct2c00823_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/b423ffe1c01e/ct2c00823_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d98/9933432/3d72663dd413/ct2c00823_0007.jpg

相似文献

[1]
Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.

J Chem Theory Comput. 2023-2-14

[2]
Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.

J Comput Aided Mol Des. 2022-10

[3]
Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.

J Comput Aided Mol Des. 2021-2

[4]
Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.

J Chem Theory Comput. 2022-3-8

[5]
Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.

J Chem Theory Comput. 2024-3-12

[6]
GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.

J Comput Chem. 2023-7-30

[7]
Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.

J Chem Theory Comput. 2014-6-10

[8]
Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.

J Phys Chem B. 2018-3-12

[9]
Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.

J Chem Theory Comput. 2018-9-14

[10]
Alchemical Osmostat for Monte Carlo Simulation: Sampling Aqueous Electrolyte Solution in Open Systems.

J Phys Chem B. 2023-1-26

引用本文的文献

[1]
Bottom-up computational design of shape-selective organic macrocycles for humid CO capture.

Nat Chem. 2025-7-22

[2]
Accelerating fragment-based drug discovery using grand canonical nonequilibrium candidate Monte Carlo.

Nat Commun. 2025-7-4

[3]
Active Learning FEP Using 3D-QSAR for Prioritizing Bioisosteres in Medicinal Chemistry.

ACS Med Chem Lett. 2025-4-29

[4]
Application of Free Energy Perturbation (FEP) Methodology for Predicting the Binding Affinity of Macrocyclic JAK2 Inhibitor Analogues of Pacritinib.

ACS Med Chem Lett. 2025-5-21

[5]
PairMap: An Intermediate Insertion Approach for Improving the Accuracy of Relative Free Energy Perturbation Calculations for Distant Compound Transformations.

J Chem Inf Model. 2025-1-27

[6]
Leveraging a Separation of States Method for Relative Binding Free Energy Calculations in Systems with Trapped Waters.

J Chem Theory Comput. 2024-12-24

[7]
Electronic Polarization Leads to a Drier Dewetted State for Hydrophobic Gating in the Big Potassium Channel.

J Phys Chem Lett. 2024-7-25

[8]
Current State of Open Source Force Fields in Protein-Ligand Binding Affinity Predictions.

J Chem Inf Model. 2024-7-8

[9]
Free Energy Density of a Fluid and Its Role in Solvation and Binding.

J Chem Theory Comput. 2024-4-9

[10]
Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.

J Chem Theory Comput. 2024-3-12

本文引用的文献

[1]
Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.

J Comput Aided Mol Des. 2022-10

[2]
Fast Equilibration of Water between Buried Sites and the Bulk by Molecular Dynamics with Parallel Monte Carlo Water Moves on Graphical Processing Units.

J Chem Theory Comput. 2021-12-14

[3]
Rimantadine Binds to and Inhibits the Influenza A M2 Proton Channel without Enantiomeric Specificity.

Biochemistry. 2021-8-3

[4]
Water molecules at protein-drug interfaces: computational prediction and analysis methods.

Chem Soc Rev. 2021-8-21

[5]
Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.

J Comput Aided Mol Des. 2021-2

[6]
Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.

J Chem Theory Comput. 2020-10-13

[7]
grand: A Python Module for Grand Canonical Water Sampling in OpenMM.

J Chem Inf Model. 2020-10-26

[8]
Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations.

J Chem Theory Comput. 2020-3-27

[9]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[10]
Utilizing Grand Canonical Monte Carlo Methods in Drug Discovery.

ACS Med Chem Lett. 2019-12-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索